Transcendence measures via the Thue–Siegel–Roth–Schmidt method

Boris Adamczewski

Institut Camille Jordan
CNRS & Université Claude Bernard Lyon 1, France
Boris.Adamczewski@math.univ-lyon1.fr
http://math.univ-lyon1.fr/~adamczew

(Joint work with Yann Bugeaud)
Irrationality measures

When a real number ξ is proved to be irrational thanks to Diophantine approximation, the proof usually provides an infinite sequence of rationals $\left(\frac{p_n}{q_n}\right)_{n \geq 1}$ converging fast enough to ξ, say $0 < |q_n \xi - p_n| < \varepsilon_n$, for a vanishing sequence of real numbers $\left(\varepsilon_n\right)_{n \geq 1}$.

When it is possible to control the growth of q_n and of ε_n, this also provides an irrationality measure for ξ, in the sense it is possible to find a function f taking positive values and such that $|\xi - \frac{p}{q}| > f(q)$, for every rational number $\frac{p}{q}$.

This just relies on a classical trick with triangular inequalities. Moreover, in the case where the following conditions are satisfied:

(i) $\varepsilon_n < q - \varepsilon_n$,

(ii) $\limsup_{n \to \infty} \log q_n + 1/\log q_n < +\infty$,

it is possible to bound $\mu(\xi)$, the irrationality exponent of ξ.

Recall that: $\mu(\xi) := \sup \bar{\rho} > 0$, such that $|\xi - \frac{p}{q}| < q - \rho$ has infinitely many solutions $\bar{\rho}$.

This way, it is for instance possible to bound from above $\mu(\zeta(2))$ and $\mu(\zeta(3))$.
Irrationality measures

When a real number ξ is proved to be irrational thanks to Diophantine approximation, the proof usually provides an infinite sequence of rationals $(p_n/q_n)_{n \geq 1}$ converging fast enough to ξ, say

$$0 < |q_n \xi - p_n| < \varepsilon_n,$$

for a vanishing sequence of real numbers $(\varepsilon_n)_{n \geq 1}$.
Irrationality measures

When a real number ξ is proved to be irrational thanks to Diophantine approximation, the proof usually provides an infinite sequence of rationals $(p_n/q_n)_{n \geq 1}$ converging fast enough to ξ, say

$$0 < |q_n\xi - p_n| < \varepsilon_n,$$

for a vanishing sequence of real numbers $(\varepsilon_n)_{n \geq 1}$.

When it is possible to control the growth of q_n and of ε_n, this also provides an irrationality measure for ξ, in the sense it is possible to find a function f taking positive values and such that $|\xi - p/q| > f(q)$, for every rational number p/q.
Irrationality measures

When a real number ξ is proved to be irrational thanks to Diophantine approximation, the proof usually provides an infinite sequence of rationals $(p_n/q_n)_{n \geq 1}$ converging fast enough to ξ, say

$$0 < |q_n \xi - p_n| < \varepsilon_n,$$

for a vanishing sequence of real numbers $(\varepsilon_n)_{n \geq 1}$.

When it is possible to control the growth of q_n and of ε_n, this also provides an irrationality measure for ξ, in the sense it is possible to find a function f taking positive values and such that $|\xi - p/q| > f(q)$, for every rational number p/q.

This just relies on a classical trick with triangular inequalities.
Irrationality measures

When a real number ξ is proved to be irrational thanks to Diophantine approximation, the proof usually provides an infinite sequence of rationals $(p_n/q_n)_{n \geq 1}$ converging fast enough to ξ, say

$$0 < |q_n \xi - p_n| < \varepsilon_n,$$

for a vanishing sequence of real numbers $(\varepsilon_n)_{n \geq 1}$.

When it is possible to control the growth of q_n and of ε_n, this also provides an irrationality measure for ξ, in the sense it is possible to find a function f taking positive values and such that $|\xi - p/q| > f(q)$, for every rational number p/q.

This just relies on a classical trick with triangular inequalities.

Moreover, in the case where the following condition are satisfied:
Irrationality measures

When a real number ξ is proved to be irrational thanks to Diophantine approximation, the proof usually provides an infinite sequence of rationals $(p_n/q_n)_{n \geq 1}$ converging fast enough to ξ, say

$$0 < |q_n \xi - p_n| < \varepsilon_n,$$

for a vanishing sequence of real numbers $(\varepsilon_n)_{n \geq 1}$.

When it is possible to control the growth of q_n and of ε_n, this also provides an irrationality measure for ξ, in the sense it is possible to find a function f taking positive values and such that $|\xi - p/q| > f(q)$, for every rational number p/q.

This just relies on a classical trick with triangular inequalities.

Moreover, in the case where the following condition are satisfied:

(i) $\varepsilon_n < q_n^{-\varepsilon}$,
Irrationality measures

When a real number ξ is proved to be irrational thanks to Diophantine approximation, the proof usually provides an infinite sequence of rationals $(p_n/q_n)_{n \geq 1}$ converging fast enough to ξ, say

$$0 < |q_n \xi - p_n| < \varepsilon_n,$$

for a vanishing sequence of real numbers $(\varepsilon_n)_{n \geq 1}$.

When it is possible to control the growth of q_n and of ε_n, this also provides an irrationality measure for ξ, in the sense it is possible to find a function f taking positive values and such that $|\xi - p/q| > f(q)$, for every rational number p/q.

This just relies on a classical trick with triangular inequalities.

Moreover, in the case where the following condition are satisfied:

(i) $\varepsilon_n < q_n^{-\varepsilon}$,

(ii) $\limsup_{n \to \infty} \log q_{n+1}/\log q_n < +\infty$,
Irrationality measures

When a real number ξ is proved to be irrational thanks to Diophantine approximation, the proof usually provides an infinite sequence of rationals $(p_n/q_n)_{n\geq 1}$ converging fast enough to ξ, say

$$0 < |q_n \xi - p_n| < \varepsilon_n,$$

for a vanishing sequence of real numbers $(\varepsilon_n)_{n\geq 1}$.

When it is possible to control the growth of q_n and of ε_n, this also provides an irrationality measure for ξ, in the sense it is possible to find a function f taking positive values and such that $|\xi - p/q| > f(q)$, for every rational number p/q.

This just relies on a classical trick with triangular inequalities.

Moreover, in the case where the following condition are satisfied:

(i) $\varepsilon_n < q_n^{-\varepsilon}$,

(ii) $\limsup_{n\to\infty} \log q_{n+1} / \log q_n < +\infty$,

it is possible to bound $\mu(\xi)$, the irrationality exponent of ξ.

Recall that:

$$\mu(\xi) := \sup_{\bar{\rho} > 0} \text{such that } |\xi - p/q| < q - \rho \text{ has infinitely many solutions} \ \bar{\rho}.$$
Irrationality measures

When a real number ξ is proved to be irrational thanks to Diophantine approximation, the proof usually provides an infinite sequence of rationals $(p_n/q_n)_{n \geq 1}$ converging fast enough to ξ, say

$$0 < |q_n \xi - p_n| < \varepsilon_n,$$

for a vanishing sequence of real numbers $(\varepsilon_n)_{n \geq 1}$.

When it is possible to control the growth of q_n and of ε_n, this also provides an **irrationality measure** for ξ, in the sense it is possible to find a function f taking positive values and such that $|\xi - p/q| > f(q)$, for every rational number p/q.

This just relies on a classical trick with triangular inequalities.

Moreover, in the case where the following condition are satisfied:

(i) $\varepsilon_n < q_n^{-\varepsilon}$,

(ii) $\limsup_{n \to \infty} \log q_{n+1}/\log q_n < +\infty$,

it is possible to bound $\mu(\xi)$, the **irrationality exponent** of ξ.

Recall that:

$$\mu(\xi) := \sup \{ \rho > 0, \text{ such that } |\xi - p/q| < q^{-\rho} \text{ has infinitely many solutions} \}.$$
Irrationality measures

When a real number ξ is proved to be irrational thanks to Diophantine approximation, the proof usually provides an infinite sequence of rationals $(p_n/q_n)_{n \geq 1}$ converging fast enough to ξ, say

$$0 < |q_n \xi - p_n| < \varepsilon_n,$$

for a vanishing sequence of real numbers $(\varepsilon_n)_{n \geq 1}$.

When it is possible to control the growth of q_n and of ε_n, this also provides an irrationality measure for ξ, in the sense it is possible to find a function f taking positive values and such that $|\xi - p/q| > f(q)$, for every rational number p/q.

This just relies on a classical trick with triangular inequalities.

Moreover, in the case where the following condition are satisfied:

(i) $\varepsilon_n < q_n^{-\varepsilon}$,
(ii) $\limsup_{n \to \infty} \log q_{n+1}/\log q_n < +\infty$,

it is possible to bound $\mu(\xi)$, the irrationality exponent of ξ.

Recall that:

$$\mu(\xi) := \sup \{ \rho > 0, \text{ such that } |\xi - p/q| < q^{-\rho} \text{ has infinitely many solutions} \}.$$

This way, it is for instance possible to bound from above $\mu(\zeta(2))$ and $\mu(\zeta(3))$.
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers. For any integer $n \geq 1$, let $w_n(\xi)$ denote the supremum of the exponents w for which $0 < |P(\xi)| < H(P)^{-w}$ has infinitely many solutions in integer polynomials $P(X)$ of degree at most n.

Set $w(\xi) := \limsup_{n \to \infty} (w_n(\xi)/n)$.

Then, ξ is an• A-number, if $w(\xi) = 0$;
• S-number, if $0 < w(\xi) < \infty$;
• T-number, if $w(\xi) = \infty$ and $w_n(\xi) < \infty$ for every integer $n \geq 1$;
• U-number, if $w(\xi) = \infty$ and $w_n(\xi) = \infty$ for some integer $n \geq 1$.

We recall some classical facts about Mahler’s classification:
• Two numbers that belong to two different classes are algebraically independent;
• Almost all real numbers are S-numbers;
• Algebraic numbers correspond to A-numbers;
• Liouville’s numbers correspond to U-numbers of degree one (the degree of a U-number is the smallest integer n for which w_n is infinite);
• π is either a S-number or a T-number (Mahler).
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers.
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers.
For any integer \(n \geq 1 \), let \(w_n(\xi) \) denote the supremum of the exponents \(w \) for which
\[
0 < |P(\xi)| < H(P)^{-w}
\]
has infinitely many solutions in integer polynomials \(P(X) \) of degree at most \(n \).

\[\text{Set } w(\xi) := \limsup_{n \to \infty} \left(\frac{w_n(\xi)}{n} \right).\]

Then,
• \(\xi \) is an \(A \)-number, if \(w(\xi) = 0 \);
• \(\xi \) is an \(S \)-number, if \(0 < w(\xi) < \infty \);
• \(\xi \) is an \(T \)-number, if \(w(\xi) = \infty \) and \(w_n(\xi) < \infty \) for every integer \(n \geq 1 \);
• \(\xi \) is an \(U \)-number, if \(w(\xi) = \infty \) and \(w_n(\xi) = \infty \) for some integer \(n \geq 1 \).

We recall some classical facts about Mahler’s classification:
• Two numbers that belong to two different classes are algebraically independent;
• Almost all real numbers are \(S \)-numbers;
• Algebraic numbers correspond to \(A \)-numbers;
• Liouville’s numbers correspond to \(U \)-numbers of degree one (the degree of a \(U \)-number is the smallest integer \(n \) for which \(w_n \) is infinite);
• \(\pi \) is either a \(S \)-number or a \(T \)-number (Mahler).
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers. For any integer \(n \geq 1 \), let \(w_n(\xi) \) denote the supremum of the exponents \(w \) for which

\[
0 < |P(\xi)| < H(P)^{-w}
\]

has infinitely many solutions in integer polynomials \(P(X) \) of degree at most \(n \). Set

\[
w(\xi) := \limsup_{n \to \infty} (w_n(\xi)/n).
\]
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers. For any integer \(n \geq 1 \), let \(w_n(\xi) \) denote the supremum of the exponents \(w \) for which

\[
0 < |P(\xi)| < H(P)^{-w}
\]

has infinitely many solutions in integer polynomials \(P(X) \) of degree at most \(n \). Set

\[
w(\xi) := \limsup_{n \to \infty} \frac{w_n(\xi)}{n}.
\]

Then, \(\xi \) is an
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers. For any integer $n \geq 1$, let $w_n(\xi)$ denote the supremum of the exponents w for which

$$0 < |P(\xi)| < H(P)^{-w}$$

has infinitely many solutions in integer polynomials $P(X)$ of degree at most n. Set

$$w(\xi) := \limsup_{n \to \infty} \left(\frac{w_n(\xi)}{n} \right).$$

Then, ξ is an

- A-number, if $w(\xi) = 0$;
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers. For any integer \(n \geq 1 \), let \(w_n(\xi) \) denote the supremum of the exponents \(w \) for which

\[
0 < |P(\xi)| < H(P)^{-w}
\]

has infinitely many solutions in integer polynomials \(P(X) \) of degree at most \(n \). Set

\[
w(\xi) := \limsup_{n \to \infty} \left(w_n(\xi) / n \right).
\]

Then, \(\xi \) is an

- \textit{A-number}, if \(w(\xi) = 0 \);
- \textit{S-number}, if \(0 < w(\xi) < \infty \);
- \textit{T-number}, if \(w(\xi) = \infty \) and \(w_n(\xi) < \infty \) for every integer \(n \geq 1 \);
- \textit{U-number}, if \(w(\xi) = \infty \) and \(w_n(\xi) = \infty \) for some integer \(n \geq 1 \).
Transcendence measures and Mahler’s classification

We recall now the **Mahler classification** of real numbers. For any integer \(n \geq 1 \), let \(w_n(\xi) \) denote the supremum of the exponents \(w \) for which

\[
0 < |P(\xi)| < H(P)^{-w}
\]

has infinitely many solutions in integer polynomials \(P(X) \) of degree at most \(n \). Set

\[
w(\xi) := \limsup_{n \to \infty} \left(\frac{w_n(\xi)}{n} \right).
\]

Then, \(\xi \) is an

- **A-number**, if \(w(\xi) = 0 \);
- **S-number**, if \(0 < w(\xi) < \infty \);
- **T-number**, if \(w(\xi) = \infty \) and \(w_n(\xi) < \infty \) for every integer \(n \geq 1 \);
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers. For any integer \(n \geq 1 \), let \(w_n(\xi) \) denote the supremum of the exponents \(w \) for which

\[
0 < |P(\xi)| < H(P)^{-w}
\]

has infinitely many solutions in integer polynomials \(P(X) \) of degree at most \(n \).

Set

\[
w(\xi) := \limsup_{n \to \infty} (w_n(\xi)/n).
\]

Then, \(\xi \) is an

- **A-number**, if \(w(\xi) = 0 \);
- **S-number**, if \(0 < w(\xi) < \infty \);
- **T-number**, if \(w(\xi) = \infty \) and \(w_n(\xi) < \infty \) for every integer \(n \geq 1 \);
- **U-number**, if \(w(\xi) = \infty \) and \(w_n(\xi) = \infty \) for some integer \(n \geq 1 \).
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers. For any integer \(n \geq 1 \), let \(w_n(\xi) \) denote the supremum of the exponents \(w \) for which

\[
0 < |P(\xi)| < H(P)^{-w}
\]

has infinitely many solutions in integer polynomials \(P(X) \) of degree at most \(n \). Set

\[
w(\xi) := \limsup_{n \to \infty} \frac{w_n(\xi)}{n}.
\]

Then, \(\xi \) is an

- **A-number**, if \(w(\xi) = 0 \);
- **S-number**, if \(0 < w(\xi) < \infty \);
- **T-number**, if \(w(\xi) = \infty \) and \(w_n(\xi) < \infty \) for every integer \(n \geq 1 \);
- **U-number**, if \(w(\xi) = \infty \) and \(w_n(\xi) = \infty \) for some integer \(n \geq 1 \).

We recall some classical facts about Mahler’s classification:
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers. For any integer \(n \geq 1 \), let \(w_n(\xi) \) denote the supremum of the exponents \(w \) for which

\[
0 < |P(\xi)| < H(P)^{-w}
\]

has infinitely many solutions in integer polynomials \(P(X) \) of degree at most \(n \). Set

\[
w(\xi) := \limsup_{n \to \infty} \left(\frac{w_n(\xi)}{n} \right).
\]

Then, \(\xi \) is an

- **A-number**, if \(w(\xi) = 0 \);
- **S-number**, if \(0 < w(\xi) < \infty \);
- **T-number**, if \(w(\xi) = \infty \) and \(w_n(\xi) < \infty \) for every integer \(n \geq 1 \);
- **U-number**, if \(w(\xi) = \infty \) and \(w_n(\xi) = \infty \) for some integer \(n \geq 1 \).

We recall some classical facts about Mahler’s classification:

- Two numbers that belong to two different classes are algebraically independent;
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers. For any integer \(n \geq 1 \), let \(w_n(\xi) \) denote the supremum of the exponents \(w \) for which

\[
0 < |P(\xi)| < H(P)^{-w}
\]

has infinitely many solutions in integer polynomials \(P(X) \) of degree at most \(n \). Set

\[
w(\xi) := \limsup_{n \to \infty} \frac{w_n(\xi)}{n}.
\]

Then, \(\xi \) is an

- **A-number**, if \(w(\xi) = 0 \);
- **S-number**, if \(0 < w(\xi) < \infty \);
- **T-number**, if \(w(\xi) = \infty \) and \(w_n(\xi) < \infty \) for every integer \(n \geq 1 \);
- **U-number**, if \(w(\xi) = \infty \) and \(w_n(\xi) = \infty \) for some integer \(n \geq 1 \).

We recall some classical facts about Mahler’s classification:

- Two numbers that belong to two different classes are algebraically independent;
- Almost all real numbers are **S**-numbers;
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers. For any integer \(n \geq 1 \), let \(w_n(\xi) \) denote the supremum of the exponents \(w \) for which

\[
0 < |P(\xi)| < H(P)^{-w}
\]

has infinitely many solutions in integer polynomials \(P(X) \) of degree at most \(n \). Set

\[
w(\xi) := \limsup_{n \to \infty} \frac{w_n(\xi)}{n}.
\]

Then, \(\xi \) is an

- \(A \)-number, if \(w(\xi) = 0 \);
- \(S \)-number, if \(0 < w(\xi) < \infty \);
- \(T \)-number, if \(w(\xi) = \infty \) and \(w_n(\xi) < \infty \) for every integer \(n \geq 1 \);
- \(U \)-number, if \(w(\xi) = \infty \) and \(w_n(\xi) = \infty \) for some integer \(n \geq 1 \).

We recall some classical facts about Mahler’s classification:

- Two numbers that belong to two different classes are algebraically independent;
- Almost all real numbers are \(S \)-numbers;
- Algebraic numbers correspond to \(A \)-numbers;
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers. For any integer $n \geq 1$, let $w_n(\xi)$ denote the supremum of the exponents w for which

$$0 < |P(\xi)| < H(P)^{-w}$$

has infinitely many solutions in integer polynomials $P(X)$ of degree at most n. Set

$$w(\xi) := \limsup_{n \to \infty} \left(\frac{w_n(\xi)}{n} \right).$$

Then, ξ is an

- **A-number**, if $w(\xi) = 0$;
- **S-number**, if $0 < w(\xi) < \infty$;
- **T-number**, if $w(\xi) = \infty$ and $w_n(\xi) < \infty$ for every integer $n \geq 1$;
- **U-number**, if $w(\xi) = \infty$ and $w_n(\xi) = \infty$ for some integer $n \geq 1$.

We recall some classical facts about Mahler’s classification:

- Two numbers that belong to two different classes are algebraically independent;
- Almost all real numbers are S-numbers;
- Algebraic numbers correspond to A-numbers;
- Liouville’s numbers correspond to U-numbers of degree one (the degree of a U-number is the smallest integer n for which w_n is infinite);
Transcendence measures and Mahler’s classification

We recall now the Mahler classification of real numbers. For any integer $n \geq 1$, let $w_n(\xi)$ denote the supremum of the exponents w for which

$$0 < |P(\xi)| < H(P)^{-w}$$

has infinitely many solutions in integer polynomials $P(X)$ of degree at most n. Set

$$w(\xi) := \limsup_{n \to \infty} \left(\frac{w_n(\xi)}{n} \right).$$

Then, ξ is an

- A-number, if $w(\xi) = 0$;
- S-number, if $0 < w(\xi) < \infty$;
- T-number, if $w(\xi) = \infty$ and $w_n(\xi) < \infty$ for every integer $n \geq 1$;
- U-number, if $w(\xi) = \infty$ and $w_n(\xi) = \infty$ for some integer $n \geq 1$.

We recall some classical facts about Mahler’s classification:

- Two numbers that belong to two different classes are algebraically independent;
- Almost all real numbers are S-numbers;
- Algebraic numbers correspond to A-numbers;
- Liouville’s numbers correspond to U-numbers of degree one (the degree of a U-number is the smallest integer n for which w_n is infinite);
- π is either a S-number or a T-number (Mahler).
Motivation

This lecture is motivated by the following question asked by Waldschmidt during a seminar talk of Bugeaud at "Groupe d'Étude sur les Problèmes Diophantiens" (November 2004, Jussieu, Paris).

Question (Waldschmidt).

When a real number ξ is proved to be transcendantal thanks to the Thue–Siegel–Roth–Schmidt method, is it true that one can always derive from the proof a transcendance measure (possibly bad) for ξ?

The aim of this talk is to explain that the answer is "essentially yes".
Motivation

This lecture is motivated by the following question asked by Waldschmidt during a seminar talk of Bugeaud at “Groupe d’Étude sur les Problèmes Diophantiens” (November 2004, Jussieu, Paris).
Motivation

This lecture is motivated by the following question asked by Waldschmidt during a seminar talk of Bugeaud at “Groupe d’Étude sur les Problèmes Diophantiens” (November 2004, Jussieu, Paris).

Question (Waldschmidt). When a real number ξ is proved to be transcendental thanks to the Thue–Siegel–Roth–Schmidt method, is it true that one can always derive from the proof a transcendance measure (possibly bad) for ξ?
This lecture is motivated by the following question asked by Waldschmidt during a seminar talk of Bugeaud at “Groupe d’Étude sur les Problèmes Diophantiens” (November 2004, Jussieu, Paris).

Question (Waldschmidt). When a real number ξ is proved to be transcendental thanks to the Thue–Siegel–Roth–Schmidt method, is it true that one can always derive from the proof a transcendence measure (possibly bad) for ξ?

The aim of this talk is to explain that the answer is “essentially yes”.

Motivation
The case of Roth’s theorem

A fundamental result produced by the Thue–Siegel–Roth–Schmidt method is of course Roth’s theorem.

Theorem (Roth, 1955). Let \(\xi \) be a real number and \(\delta > 0 \). Let us assume that there exists an infinite sequence of distinct rational numbers \((p_n/q_n)_{n \geq 1}\) such that
\[
|\xi - p_n/q_n| < q_n^{-2 - \delta},
\]
for every \(n \geq 1 \). Then, \(\xi \) is transcendental.

Theorem (Baker, 1964). Under the assumption of Roth’s theorem, if moreover
\[
\limsup_{n \to \infty} \log q_n + \log q_{n+1} < +\infty,
\]
then \(\omega_d(\xi) < e^{2c_2} \) for a constant \(c \) independent of \(d \).

In particular, \(\xi \) is either a \(S \)-number or a \(T \)-number.

The proof is rather technical (sixteen pages including seven preliminary lemmas).
A fundamental result produced by the Thue–Siegel–Roth–Schmidt method is of course Roth’s theorem.

Theorem (Roth, 1955). Let \(\xi \) be a real number and \(\delta > 0 \). Let us assume that there exists an infinite sequence of distinct rational numbers \((p_n/q_n)_{n \geq 1}\) such that
\[
|\xi - p_n/q_n| < q_n^{-2 - \delta},
\]
for every \(n \geq 1 \). Then, \(\xi \) is transcendental.

Theorem (Baker, 1964). Under the assumption of Roth’s theorem, if moreover
\[
\limsup_{n \to \infty} \log q_{n+1} + \log q_n < +\infty,
\]
then \(\nu(\xi) < e^{cd^2} \) for a constant \(c \) independent of \(d \).

In particular, \(\xi \) is either a \(S \)-number or a \(T \)-number. The proof is rather technical (sixteen pages including seven preliminary lemmas).
The case of Roth’s theorem

A fundamental result produced by the Thue–Siegel–Roth–Schmidt method is of course Roth’s theorem.

Theorem (Roth, 1955). Let ξ be a real number and $\delta > 0$. Let us assume that there exists an infinite sequence of distinct rational numbers $(p_n/q_n)_{n \geq 1}$ such that

$$|\xi - p_n/q_n| < q_n^{-2-\delta},$$

for every $n \geq 1$. Then, ξ is transcendental.
The case of Roth’s theorem

A fundamental result produced by the Thue–Siegel–Roth–Schmidt method is of course Roth’s theorem.

Theorem (Roth, 1955). Let \(\xi \) be a real number and \(\delta > 0 \). Let us assume that there exists an infinite sequence of distinct rational numbers \((p_n/q_n)_{n \geq 1}\) such that

\[
|\xi - p_n/q_n| < q_n^{-2-\delta},
\]

for every \(n \geq 1 \). Then, \(\xi \) is transcendental.

The case of Roth’s theorem

A fundamental result produced by the Thue–Siegel–Roth–Schmidt method is of course Roth’s theorem.

Theorem (Roth, 1955). Let ξ be a real number and $\delta > 0$. Let us assume that there exists an infinite sequence of distinct rational numbers $(p_n/q_n)_{n \geq 1}$ such that

$$|\xi - p_n/q_n| < q_n^{-2-\delta},$$

for every $n \geq 1$. Then, ξ is transcendental.

Theorem (Baker, 1964). Under the assumption of Roth’s theorem, if moreover

$$\limsup_{n \to \infty} \frac{\log q_{n+1}}{\log q_n} < +\infty,$$

then $w_d(\xi) < e^{e^{cd^2}}$ for a constant c independent of d.
The case of Roth’s theorem

A fundamental result produced by the Thue–Siegel–Roth–Schmidt method is of course Roth’s theorem.

Theorem (Roth, 1955). Let \(\xi \) be a real number and \(\delta > 0 \). Let us assume that there exists an infinite sequence of distinct rational numbers \((p_n/q_n)_{n \geq 1} \) such that

\[
|\xi - p_n/q_n| < q_n^{-2-\delta},
\]

for every \(n \geq 1 \). Then, \(\xi \) is transcendental.

Theorem (Baker, 1964). Under the assumption of Roth’s theorem, if moreover

\[
\limsup_{n \to \infty} \frac{\log q_{n+1}}{\log q_n} < +\infty,
\]

then \(w_d(\xi) < e^{cd^2} \) for a constant \(c \) independent of \(d \). In particular, \(\xi \) is either a \(S \)-number or a \(T \)-number.
The case of Roth’s theorem

A fundamental result produced by the Thue–Siegel–Roth–Schmidt method is of course Roth’s theorem.

Theorem (Roth, 1955). Let ξ be a real number and $\delta > 0$. Let us assume that there exists an infinite sequence of distinct rational numbers $(p_n/q_n)_{n\geq 1}$ such that

$$|\xi - p_n/q_n| < q_n^{-2-\delta},$$

for every $n \geq 1$. Then, ξ is transcendental.

Theorem (Baker, 1964). Under the assumption of Roth’s theorem, if moreover

$$\limsup_{n \to \infty} \frac{\log q_{n+1}}{\log q_n} < +\infty,$$

then $w_d(\xi) < e^{ecd^2}$ for a constant c independent of d. In particular, ξ is either a S-number or a T-number.

The proof is rather technical (sixteen pages including seven preliminary lemmas).
Quantitative statements and a short proof of Baker’s theorem

It is well-known that we can bound the number of solutions of Roth’s inequality.

Theorem (Evertse, 1995).

Let α be an algebraic number of degree d and $\delta > 0$. Then, the inequality

$$|\xi - p/q| < q^{-2 - \delta},$$

has at most $c_\delta \log d \log \log d$ solutions with $q > H(\alpha)$, where c_δ only depends on δ.

New idea.

Let ξ be a real number such that

$$|\xi - p_n/q_n| < q_n^{-2 - \delta_n},$$

and

$$\limsup_{n \to \infty} (\log q_n + 1/\log q_n) < +\infty.$$

Let α is an algebraic number of degree $d \geq 2$ such that $q_n^0 < H(\alpha) \leq q_n^0 + 1$ and $|\xi - \alpha| < H(\alpha) - \chi$, for a real number χ.

Then,

$$|\alpha - p_n^0 + k/q_n^0 + k| \leq |\xi - p_n^0 + k/q_n^0 + k| + |\xi - \alpha| \leq q_n^{-2 - \delta_n} + H(\alpha) - \chi < 2q_n^{-2 - \delta_n},$$

assuming that $H(\alpha) - \chi < q_n^0 < q_n^{-2 - \delta_n}$. Now, if χ is large enough, this works for many integers k since q_n grows at most exponentially.

Hence, we get an upper bound for χ and thus for $w_d(\xi)$.
Quantitative statements and a short proof of Baker’s theorem

It is well-known that we can bound the number of solutions of Roth’s inequality.
Quantitative statements and a short proof of Baker’s theorem

It is well-known that we can bound the number of solutions of Roth’s inequality.

Theorem (Evertse, 1995). Let \(\alpha \) be an algebraic number of degree \(d \) and \(\delta > 0 \). Then, the inequality

\[
\left| \xi - \frac{p}{q} \right| < q^{-2-\delta},
\]

has at most \(c_{\delta} \log d \log \log d \) solutions with \(q > H(\alpha) \), where \(c_{\delta} \) only depends on \(\delta \).
Quantitative statements and a short proof of Baker’s theorem

It is well-known that we can bound the number of solutions of Roth’s inequality.

Theorem (Evertse, 1995). Let \(\alpha \) be an algebraic number of degree \(d \) and \(\delta > 0 \). Then, the inequality

\[
|\xi - p/q| < q^{-2-\delta},
\]

has at most \(c_\delta \log d \log \log d \) solutions with \(q > H(\alpha) \), where \(c_\delta \) only depends on \(\delta \).
Quantitative statements and a short proof of Baker’s theorem

It is well-known that we can bound the number of solutions of Roth’s inequality.

Theorem (Evertse, 1995). Let \(\alpha \) be an algebraic number of degree \(d \) and \(\delta > 0 \). Then, the inequality

\[
|\xi - p/q| < q^{-2-\delta},
\]

has at most \(c_\delta \log d \log \log d \) solutions with \(q > H(\alpha) \), where \(c_\delta \) only depends on \(\delta \).

New idea. Let \(\xi \) be a real number such that

\[
|\xi - p_n/q_n| < q_n^{-2-\delta} \quad \text{and} \quad \limsup_{n \to \infty} (\log q_{n+1}/\log q_n) < +\infty.
\]
Quantitative statements and a short proof of Baker’s theorem

It is well-known that we can bound the number of solutions of Roth’s inequality.

Theorem (Evertse, 1995). Let α be an algebraic number of degree d and $\delta > 0$. Then, the inequality

$$|\xi - p/q| < q^{-2-\delta},$$

has at most $c_\delta \log d \log \log d$ solutions with $q > H(\alpha)$, where c_δ only depends on δ.

New idea. Let ξ be a real number such that

$$|\xi - p_n/q_n| < q_n^{-2-\delta} \quad \text{and} \quad \limsup_{n \to \infty} (\log q_{n+1}/\log q_n) < +\infty.$$

Let α is an algebraic number of degree $d \geq 2$ such that $q_{n_0} < H(\alpha) \leq q_{n_0+1}$ and

$$|\xi - \alpha| < H(\alpha)^{-\chi},$$

for a real number χ.
Quantitative statements and a short proof of Baker’s theorem

It is well-known that we can bound the number of solutions of Roth’s inequality.

Theorem (Evertse, 1995). Let α be an algebraic number of degree d and $\delta > 0$. Then, the inequality

$$|\xi - p/q| < q^{-2-\delta},$$

has at most $c_\delta \log d \log \log d$ solutions with $q > H(\alpha)$, where c_δ only depends on δ.

New idea. Let ξ be a real number such that

$$|\xi - p_n/q_n| < q_n^{-2-\delta} \quad \text{and} \quad \limsup_{n \to \infty} (\log q_{n+1}/\log q_n) < +\infty.$$

Let α is an algebraic number of degree $d \geq 2$ such that $q_{n_0} < H(\alpha) \leq q_{n_0+1}$ and

$$|\xi - \alpha| < H(\alpha)^{-\chi},$$

for a real number χ. Then,

$$|\alpha - p_{n_0+k}/q_{n_0+k}| \leq |\xi - p_{n_0+k}/q_{n_0+k}| + |\xi - \alpha|$$
Quantitative statements and a short proof of Baker’s theorem

It is well-known that we can bound the number of solutions of Roth’s inequality.

Theorem (Evertse, 1995). Let α be an algebraic number of degree d and $\delta > 0$. Then, the inequality

$$|\xi - p/q| < q^{-2-\delta},$$

has at most $c_\delta \log d \log \log d$ solutions with $q > H(\alpha)$, where c_δ only depends on δ.

New idea. Let ξ be a real number such that

$$|\xi - p_n/q_n| < q_n^{-2-\delta} \quad \text{and} \quad \limsup_{n \to \infty} (\log q_{n+1}/\log q_n) < +\infty.$$

Let α is an algebraic number of degree $d \geq 2$ such that $q_{n_0} < H(\alpha) \leq q_{n_0+1}$ and

$$|\xi - \alpha| < H(\alpha)^{-\chi},$$

for a real number χ. Then,

$$|\alpha - p_{n_0+k}/q_{n_0+k}| \leq |\xi - p_{n_0+k}/q_{n_0+k}| + |\xi - \alpha| \leq q_{n_0+k}^{-2-\delta} + H(\alpha)^{-\chi}.$$
Quantitative statements and a short proof of Baker’s theorem

It is well-known that we can bound the number of solutions of Roth’s inequality.

Theorem (Evertse, 1995). Let α be an algebraic number of degree d and $\delta > 0$. Then, the inequality

$$|\xi - p/q| < q^{-2-\delta},$$

has at most $c_\delta \log d \log \log d$ solutions with $q > H(\alpha)$, where c_δ only depends on δ.

New idea. Let ξ be a real number such that

$$|\xi - p_n/q_n| < q_n^{-2-\delta} \quad \text{and} \quad \limsup_{n \to \infty} (\log q_{n+1}/\log q_n) < +\infty.$$

Let α is an algebraic number of degree $d \geq 2$ such that $q_n < H(\alpha) \leq q_{n+1}$ and

$$|\xi - \alpha| < H(\alpha)^{-\chi},$$

for a real number χ. Then,

$$|\alpha - p_{n_0+k}/q_{n_0+k}| \leq |\xi - p_{n_0+k}/q_{n_0+k}| + |\xi - \alpha| \leq q_{n_0+k}^{-2-\delta} + H(\alpha)^{-\chi} < 2q_{n_0+k}^{-2-\delta}$$

assuming that $H(\alpha)^{-\chi} < q_{n_0}^{-\chi} < q_{n_0+k}^{-2-\delta}$.
Quantitative statements and a short proof of Baker’s theorem

It is well-known that we can bound the number of solutions of Roth’s inequality.

Theorem (Evertse, 1995). Let α be an algebraic number of degree d and $\delta > 0$. Then, the inequality

$$|\xi - p/q| < q^{-2-\delta},$$

has at most $c_\delta \log d \log \log d$ solutions with $q > H(\alpha)$, where c_δ only depends on δ.

New idea. Let ξ be a real number such that

$$|\xi - p_n/q_n| < q_n^{-2-\delta} \quad \text{and} \quad \limsup_{n \to \infty} (\log q_{n+1}/\log q_n) < +\infty.$$

Let α is an algebraic number of degree $d \geq 2$ such that $q_{n_0} < H(\alpha) \leq q_{n_0+1}$ and

$$|\xi - \alpha| < H(\alpha)^{-\chi},$$

for a real number χ. Then,

$$|\alpha - p_{n_0+k}/q_{n_0+k}| \leq |\xi - p_{n_0+k}/q_{n_0+k}| + |\xi - \alpha| \leq q_{n_0+k}^{-2-\delta} + H(\alpha)^{-\chi} < 2q_{n_0+k}^{-2-\delta}$$

assuming that $H(\alpha)^{-\chi} < q_{n_0}^{-\chi} < q_{n_0+k}^{-2-\delta}$. Now, if χ is large enough, this works for many integers k since q_n grows at most exponentially.
Quantitative statements and a short proof of Baker’s theorem

It is well-known that we can bound the number of solutions of Roth’s inequality.

Theorem (Evertse, 1995). Let \(\alpha \) be an algebraic number of degree \(d \) and \(\delta > 0 \). Then, the inequality

\[
|\xi - p/q| < q^{-2-\delta},
\]

has at most \(c_\delta \log d \log \log d \) solutions with \(q > H(\alpha) \), where \(c_\delta \) only depends on \(\delta \).

New idea. Let \(\xi \) be a real number such that

\[
|\xi - p_n/q_n| < q_n^{-2-\delta} \quad \text{and} \quad \limsup_{n \to \infty} (\log q_{n+1}/\log q_n) < +\infty.
\]

Let \(\alpha \) is an algebraic number of degree \(d \geq 2 \) such that \(q_{n_0} < H(\alpha) \leq q_{n_0+1} \) and

\[
|\xi - \alpha| < H(\alpha)^{-\chi},
\]

for a real number \(\chi \). Then,

\[
|\alpha - p_{n_0+k}/q_{n_0+k}| \leq |\xi - p_{n_0+k}/q_{n_0+k}| + |\xi - \alpha| \leq q_{n_0+k}^{-2-\delta} + H(\alpha)^{-\chi} < 2q_{n_0+k}^{-2-\delta}
\]

assuming that \(H(\alpha)^{-\chi} < q_{n_0}^{-\chi} < q_{n_0+k}^{-2-\delta} \). Now, if \(\chi \) is large enough, this works for many integers \(k \) since \(q_n \) grows at most exponentially. Hence, we get an upper bound for \(\chi \) and thus for \(w_d(\xi) \).
Quantitative statements and a short proof of Baker’s theorem

By this way, we can improve Baker’s result as follows.

Theorem (A. & Bugeaud, 2006).

Under the assumption of Baker’s theorem, we have

$$w_d(\xi) < c_1 d c_2 \log \log d$$

for some constants c_1 and c_2 both independent of d.

It is interesting to note that if we replace the bound of Evertse by the one of Davenport and Roth in H. Davenport & K. F. Roth,

we exactly obtain Baker’s theorem.

The main interest of this new approach is that we can use it in more general situations.
Quantitative statements and a short proof of Baker’s theorem

By this way, we can improve Baker’s result as follows.

Theorem (A. & Bugeaud, 2006).

Under the assumption of Baker’s theorem, we have

\[w(d(\xi)) < c_1 d c_2 \log \log d \]

for some constants \(c_1 \) and \(c_2 \) both independent of \(d \).

It is interesting to note that if we replace the bound of Evertse by the one of Davenport and Roth in H. Davenport & K. F. Roth, Rational approximation to algebraic numbers, Mathematika 2 (1955) 160–167.

we exactly obtain Baker’s theorem.

The main interest of this new approach is that we can use it in more general situations.
By this way, we can improve Baker’s result as follows.

Theorem (A. & Bugeaud, 2006). Under the assumption of Baker’s theorem, we have

\[w_d(\xi) < c_1 d^{c_2 \log \log d} \]

for some constants \(c_1 \) and \(c_2 \) both independent of \(d \).
Quantitative statements and a short proof of Baker’s theorem

By this way, we can improve Baker’s result as follows.

Theorem (A. & Bugeaud, 2006). Under the assumption of Baker’s theorem, we have

$$w_d(\xi) < c_1 d^{c_2 \log \log d}$$

for some constants c_1 and c_2 both independent of d.

It is interesting to note that if we replace the bound of Evertse by the one of Davenport and Roth in

Quantitative statements and a short proof of Baker’s theorem

By this way, we can improve Baker’s result as follows.

Theorem (A. & Bugeaud, 2006). Under the assumption of Baker’s theorem, we have

\[w_d(\xi) < c_1 d^{c_2 \log \log d} \]

for some constants \(c_1 \) and \(c_2 \) both independent of \(d \).

It is interesting to note that if we replace the bound of Evertse by the one of Davenport and Roth in

we exactly obtain Baker’s theorem.
Quantitative statements and a short proof of Baker’s theorem

By this way, we can improve Baker’s result as follows.

Theorem (A. & Bugeaud, 2006). Under the assumption of Baker’s theorem, we have

\[w_d(\xi) < c_1 d^{c_2 \log \log d} \]

for some constants \(c_1 \) and \(c_2 \) both independent of \(d \).

It is interesting to note that if we replace the bound of Evertse by the one of Davenport and Roth in

we exactly obtain Baker’s theorem.

The main interest of this new approach is that we can use it in more general situations.
Quantitative statements and Schmidt Subspace Theorem

Theorem (W. M. Schmidt). Let \(m \geq 2 \) be an integer and \(\delta > 0 \). Let \(L_1, \ldots, L_m \) be linearly independent linear forms in \(x = (x_1, \ldots, x_m) \) with algebraic coefficients. Then, the set of solutions \(x = (x_1, \ldots, x_m) \in \mathbb{Z}^m \) to the inequality

\[
|L_1(x) \cdots L_m(x)| \leq (\max\{ |x_1|, \ldots, |x_m| \})^{-\delta}
\]

lies in finitely many proper subspaces of \(\mathbb{Q}^m \).

Quantitative statements by Evertse, 1996. Let \(d \) be the degree of the number field generated by the coefficients of all linear forms, then the number of exceptional subspaces is bounded by \(c_{m,\delta} \log d \log \log d \), where the constant \(c_{m,\delta} \) only depends on \(m \) and \(\delta \).

There exist extensions of this result to number fields and to \(p \)-adic valuations (see Evertse & Sclickewei, 2002).
Quantitative statements and Schmidt Subspace Theorem

We first recall the simplest version of the Schmidt Subspace Theorem.
Quantitative statements and Schmidt Subspace Theorem

We first recall the simplest version of the Schmidt Subspace Theorem.

Theorem (W. M. Schmidt). Let $m \geq 2$ be an integer and $\delta > 0$. Let L_1, \ldots, L_m be linearly independent linear forms in $x = (x_1, \ldots, x_m)$ with algebraic coefficients. Then, the set of solutions $x = (x_1, \ldots, x_m) \in \mathbb{Z}^m$ to the inequality

$$|L_1(x) \ldots L_m(x)| \leq (\max\{|x_1|, \ldots, |x_m|\})^{-\delta}$$

lies in finitely many proper subspaces of \mathbb{Q}^m.

Quantitative statements by Evertse, 1996. Let d be the degree of the number field generated by the coefficients of all linear forms, then the number of exceptional subspaces is bounded by $c_{m,\delta} \log d \log \log d$, where the constant $c_{m,\delta}$ only depends on m and δ. There exist extensions of this result to number fields and to p-adic valuations (see Evertse & Sclickewei, 2002).
We first recall the simplest version of the Schmidt Subspace Theorem.

Theorem (W. M. Schmidt). Let \(m \geq 2 \) be an integer and \(\delta > 0 \). Let \(L_1, \ldots, L_m \) be linearly independent linear forms in \(x = (x_1, \ldots, x_m) \) with algebraic coefficients. Then, the set of solutions \(x = (x_1, \ldots, x_m) \in \mathbb{Z}^m \) to the inequality

\[
|L_1(x) \ldots L_m(x)| \leq \left(\max\{|x_1|, \ldots, |x_m|\} \right)^{-\delta}
\]

lies in finitely many proper subspaces of \(\mathbb{Q}^m \).

Quantitative statements by Evertse, 1996. Let \(d \) be the degree of the number field generated by the coefficients of all linear forms, then the number of exceptional subspaces is bounded by

\[
c_{m,\delta} \log d \log \log d,
\]

where the constant \(c_{m,\delta} \) only depends on \(m \) and \(\delta \).
We first recall the simplest version of the Schmidt Subspace Theorem.

Theorem (W. M. Schmidt). Let \(m \geq 2 \) be an integer and \(\delta > 0 \). Let \(L_1, \ldots, L_m \) be linearly independent linear forms in \(x = (x_1, \ldots, x_m) \) with algebraic coefficients. Then, the set of solutions \(x = (x_1, \ldots, x_m) \in \mathbb{Z}^m \) to the inequality

\[
|L_1(x) \ldots L_m(x)| \leq (\max\{|x_1|, \ldots, |x_m|\})^{-\delta}
\]

lies in finitely many proper subspaces of \(\mathbb{Q}^m \).

Quantitative statements by Evertse, 1996. Let \(d \) be the degree of the number field generated by the coefficients of all linear forms, then the number of exceptional subspaces is bounded by

\[
c_{m,\delta} \log d \log \log d,
\]

where the constant \(c_{m,\delta} \) only depends on \(m \) and \(\delta \).

There exist extensions of this result to number fields and to \(p \)-adic valuations (see Evertse & Sclickewei, 2002).
A proof of transcendence via the Subspace Theorem

To prove that a real number ξ is transcendental, you first need linear forms with coefficients in the field $\mathbb{Q}(\xi)$ and infinitely many integer points $(x_n)_{n \geq 1}$ such that

$$|L_1(x_n) \cdots L_m(x_n)| \leq H(x_n)^{-\delta}.$$

You assume now that ξ is algebraic, so that $\mathbb{Q}(\xi) = \mathbb{Q}$, and you argue by contradiction. Since ξ is algebraic, you can apply the Subspace Theorem and thanks to the pigeonhole principle you know that infinitely many of the points x_n lie in a same subspace. Then:

(i) either it gives you a contradiction (take for instance a suitable limit and find that ξ lies in a very special subset of \mathbb{Q} such as a given number field);

(ii) either it gives you new small linear forms with a smaller number of variables and you apply inductively the Subspace Theorem until you reach the situation (i).
A proof of transcendence via the Subspace Theorem

How a proof of transcendence via the Subspace Theorem looks like?
How a proof of transcendence via the Subspace Theorem looks like? To prove that a real number ξ is transcendental, you first need linear forms with coefficients in the field $\overline{\mathbb{Q}}(\xi)$ and infinitely many integer points $(x_n)_{n \geq 1}$ such that

$$|L_1(x) \ldots L_m(x_n)| \leq H(x_n)^{-\delta}.$$
How a proof of transcendence via the Subspace Theorem looks like? To prove that a real number ξ is transcendental, you first need linear forms with coefficients in the field $\mathbb{Q}(\xi)$ and infinitely many integer points $(x_n)_{n \geq 1}$ such that

$$|L_1(x) \ldots L_m(x)| \leq H(x)^{-\delta}.$$

You assume now that ξ is algebraic, so that $\mathbb{Q}(\xi) = \mathbb{Q}$, and you argue by contradiction.
A proof of transcendence via the Subspace Theorem

How a proof of transcendence via the Subspace Theorem looks like? To prove that a
real number ξ is transcendental, you first need linear forms with coefficients in the
field $\overline{\mathbb{Q}}(\xi)$ and infinitely many integer points $(x_n)_{n \geq 1}$ such that

$$|L_1(x) \ldots L_m(x_n)| \leq H(x_n)^{-\delta}.$$

You assume now that ξ is algebraic, so that $\overline{\mathbb{Q}}(\xi) = \overline{\mathbb{Q}}$, and you argue by contradiction.

Since ξ is algebraic, you can apply the Subspace Theorem
How a proof of transcendence via the Subspace Theorem looks like? To prove that a real number ξ is transcendental, you first need linear forms with coefficients in the field $\overline{\mathbb{Q}}(\xi)$ and infinitely many integer points $(x_n)_{n \geq 1}$ such that

$$|L_1(x) \cdots L_m(x_n)| \leq H(x_n)^{-\delta}.$$

You assume now that ξ is algebraic, so that $\overline{\mathbb{Q}}(\xi) = \overline{\mathbb{Q}}$, and you argue by contradiction.

Since ξ is algebraic, you can apply the Subspace Theorem and thanks to the pigeonhole principle you know that infinitely many of the points x_n lie in a same subspace.
How a proof of transcendence via the Subspace Theorem looks like? To prove that a real number ξ is transcendental, you first need linear forms with coefficients in the field $\mathbb{Q}(\xi)$ and infinitely many integer points $(x_n)_{n \geq 1}$ such that

$$|L_1(x) \ldots L_m(x_n)| \leq H(x_n)^{-\delta}.$$

You assume now that ξ is algebraic, so that $\mathbb{Q}(\xi) = \mathbb{Q}$, and you argue by contradiction.

Since ξ is algebraic, you can apply the Subspace Theorem and thanks to the pigeonhole principle you know that infinitely many of the points x_n lie in a same subspace.

Then:

(i) either it gives you a contradiction
How a proof of transcendence via the Subspace Theorem looks like? To prove that a real number ξ is transcendental, you first need linear forms with coefficients in the field $\mathbb{Q}(\xi)$ and infinitely many integer points $(x_n)_{n \geq 1}$ such that

$$|L_1(x) \ldots L_m(x_n)| \leq H(x_n)^{-\delta}.$$

You assume now that ξ is algebraic, so that $\mathbb{Q}(\xi) = \mathbb{Q}$, and you argue by contradiction.

Since ξ is algebraic, you can apply the Subspace Theorem and thanks to the pigeonhole principle you know that infinitely many of the points x_n lie in a same subspace.

Then:

(i) either it gives you a contradiction (take for instance a suitable limit and find that ξ lies in a very special subset of \mathbb{Q} such as a given number field);
How a proof of transcendence via the Subspace Theorem looks like? To prove that a real number ξ is transcendental, you first need linear forms with coefficients in the field $\overline{\mathbb{Q}}(\xi)$ and infinitely many integer points $(x_n)_{n \geq 1}$ such that

$$|L_1(x) \ldots L_m(x_n)| \leq H(x_n)^{-\delta}.$$

You assume now that ξ is algebraic, so that $\overline{\mathbb{Q}}(\xi) = \overline{\mathbb{Q}}$, and you argue by contradiction.

Since ξ is algebraic, you can apply the Subspace Theorem and thanks to the pigeonhole principle you know that infinitely many of the points x_n lie in a same subspace.

Then:

(i) either it gives you a contradiction (take for instance a suitable limit and find that ξ lies in a very special subset of $\overline{\mathbb{Q}}$ such as a given number field);

(ii) either it gives you new small linear forms with a smaller number of variables and you apply inductively the Subspace Theorem until you reach the situation (i).
How to get a transcendence measure in such a case?
How to get a transcendence measure in such a case?

You assume that \(\limsup_{n \to \infty} \frac{\log H(x_{n+1})}{\log H(x_n)} < +\infty \).
How to get a transcendence measure in such a case?

You assume that \(\limsup_{n \to \infty} \frac{\log H(x_{n+1})}{\log H(x_n)} < +\infty \).

Then, you consider an algebraic number \(\alpha \) of degree \(d \) (large enough so that \(\alpha \) does not lie in the very special subset of \(\overline{\mathbb{Q}} \)) such that, for a too large number \(\chi \),

\[|\xi - \alpha| < H(\alpha)^{-\chi}. \]
How to get a transcendence measure in such a case?

You assume that \(\limsup_{n \to \infty} \frac{\log H(x_{n+1})}{\log H(x_n)} < +\infty. \)

Then, you consider an algebraic number \(\alpha \) of degree \(d \) (large enough so that \(\alpha \) does not lie in the vey special subset of \(\mathbb{Q} \)) such that, for a too large number \(\chi \),

\[
|\xi - \alpha| < H(\alpha)^{-\chi}.
\]

You replace each linear form \(L_i \) with coefficients in \(\overline{\mathbb{Q}}(\xi) \) by a linear form \(L'_i \) obtained by replacing every occurrence of \(\xi \) by \(\alpha \).
How to get a transcendence measure in such a case?

You assume that \(\limsup_{n \to \infty} \log H(x_{n+1})/ \log H(x_n) < +\infty \).

Then, you consider an algebraic number \(\alpha \) of degree \(d \) (large enough so that \(\alpha \) does not lie in the very special subset of \(\overline{\mathbb{Q}} \)) such that, for a too large number \(\chi \),

\[
|\xi - \alpha| < H(\alpha)^{-\chi}.
\]

You replace each linear form \(L_i \) with coefficients in \(\overline{\mathbb{Q}}(\xi) \) by a linear form \(L'_i \) obtained by replacing every occurrence of \(\xi \) by \(\alpha \).

Then

\[
|L'_1(x_n) \ldots L'_m(x_n)| \leq H(x_n)^{-\delta}
\]

for a finite but large number \(M_1 \) of points \(x_n \) (because \(\alpha \) is very close to \(\xi \)).
How to get a transcendence measure in such a case?

You assume that $\limsup_{n \to \infty} \frac{\log H(x_{n+1})}{\log H(x_n)} < +\infty$.

Then, you consider an algebraic number α of degree d (large enough so that α does not lie in the very special subset of $\overline{\mathbb{Q}}$) such that, for a too large number χ,

$$|\xi - \alpha| < H(\alpha)^{-\chi}.$$

You replace each linear form L_i with coefficients in $\overline{\mathbb{Q}}(\xi)$ by a linear form L_i' obtained by replacing every occurrence of ξ by α.

Then

$$|L_1'(x_n) \ldots L_m'(x_n)| \leq H(x_n)^{-\delta}$$

for a finite but large number M_1 of points x_n (because α is very close to ξ).

Since the new linear forms have algebraic coefficients, you can apply the quantitative Subspace Theorem.
How to get a transcendence measure in such a case?

You assume that $\limsup_{n \to \infty} \frac{\log H(x_{n+1})}{\log H(x_n)} < +\infty$.

Then, you consider an algebraic number α of degree d (large enough so that α does not lie in the very special subset of $\overline{\mathbb{Q}}$) such that, for a too large number χ,

$$|\xi - \alpha| < H(\alpha)^{-\chi}.$$

You replace each linear form L_i with coefficients in $\overline{\mathbb{Q}}(\xi)$ by a linear form L'_i obtained by replacing every occurrence of ξ by α.

Then

$$|L'_1(x_n) \ldots L'_m(x_n)| \leq H(x_n)^{-\delta}$$

for a finite but large number M_1 of points x_n (because α is very close to ξ).

Since the new linear forms have algebraic coefficients, you can apply the quantitative Subspace Theorem. By the pigeonhole principle, many points, say $M_2 \gg M_1/(\log d \log \log d)$, lie in a same hyperplan.
How to get a transcendence measure in such a case?

You assume that \(\limsup_{n \to \infty} \frac{\log H(x_{n+1})}{\log H(x_n)} < +\infty \).

Then, you consider an algebraic number \(\alpha \) of degree \(d \) (large enough so that \(\alpha \) does not lie in the very special subset of \(\overline{\mathbb{Q}} \)) such that, for a too large number \(\chi \),

\[
|\xi - \alpha| < H(\alpha)^{-\chi}.
\]

You replace each linear form \(L_i \) with coefficients in \(\overline{\mathbb{Q}}(\xi) \) by a linear form \(L'_i \) obtained by replacing every occurrence of \(\xi \) by \(\alpha \).

Then

\[
|L'_1(x_n) \ldots L'_m(x_n)| \leq H(x_n)^{-\delta}
\]

for a finite but large number \(M_1 \) of points \(x_n \) (because \(\alpha \) is very close to \(\xi \)).

Since the new linear forms have algebraic coefficients, you can apply the quantitative Subspace Theorem. By the pigeonhole principle, many points, say \(M_2 \gg M_1/(\log d \log \log d) \), lie in a same hyperplan.

Thanks to linear algebra, many points, say \(M_3 \gg M_2 \), lie in a same hyperplan with a rather small height.
How to get a transcendence measure in such a case?

You assume that \(\limsup_{n \to \infty} \log H(x_{n+1})/\log H(x_n) < +\infty \).

Then, you consider an algebraic number \(\alpha \) of degree \(d \) (large enough so that \(\alpha \) does not lie in the very special subset of \(\overline{\mathbb{Q}} \)) such that, for a too large number \(\chi \),

\[
|\xi - \alpha| < H(\alpha)^{-\chi}.
\]

You replace each linear form \(L_i \) with coefficients in \(\overline{\mathbb{Q}}(\xi) \) by a linear form \(L'_i \) obtained by replacing every occurrence of \(\xi \) by \(\alpha \).

Then

\[
|L'_1(x_n) \ldots L'_m(x_n)| \leq H(x_n)^{-\delta}
\]

for a finite but large number \(M_1 \) of points \(x_n \) (because \(\alpha \) is very close to \(\xi \)).

Since the new linear forms have algebraic coefficients, you can apply the quantitative Subspace Theorem. By the pigeonhole principle, many points, say \(M_2 \gg M_1/(\log d \log \log d) \), lie in a same hyperplan.

Thanks to linear algebra, many points, say \(M_3 \gg M_2 \), lie in a same hyperplan with a rather small height.

On the other hand, there is a small trick to ensure that a point \(x_n \) in this hyperplan has a very large height.
How to get a transcendence measure in such a case?

You assume that \(\limsup_{n \to \infty} \log H(x_{n+1})/ \log H(x_n) < +\infty \).

Then, you consider an algebraic number \(\alpha \) of degree \(d \) (large enough so that \(\alpha \) does not lie in the very special subset of \(\overline{\mathbb{Q}} \)) such that, for a \text{ too large number } \chi,

\[
|\xi - \alpha| < H(\alpha)^{-\chi}.
\]

You replace each linear form \(L_i \) with coefficients in \(\overline{\mathbb{Q}}(\xi) \) by a linear form \(L'_i \) obtained by replacing every occurrence of \(\xi \) by \(\alpha \).

Then

\[
|L'_1(x_n) \ldots L'_m(x_n)| \leq H(x_n)^{-\delta}
\]

for a finite but \text{ large number } \(M_1 \) of points \(x_n \) (because \(\alpha \) is very close to \(\xi \)).

Since the new linear forms have algebraic coefficients, you can apply the quantitative Subspace Theorem. By the pigeonhole principle, \text{ many points}, say \(M_2 \gg M_1/(\log d \log \log d) \), lie in a same hyperplan.

Thanks to linear algebra, \text{ many points}, say \(M_3 \gg M_2 \), lie in a same hyperplan with a rather \text{ small height}.

On the other hand, there is a small trick to ensure that a point \(x_n \) in this hyperplan has a very \text{ large height}.

This provides a contradiction (which corresponds to case (i)), otherwise you can argue inductively (as in (ii)).
How to get a transcendence measure in such a case?

You assume that \(\limsup_{n \to \infty} \log H(x_{n+1})/ \log H(x_n) < +\infty \).

Then, you consider an algebraic number \(\alpha \) of degree \(d \) (large enough so that \(\alpha \) does not lie in the very special subset of \(\mathbb{Q} \)) such that, for a too large number \(\chi \),

\[
|\xi - \alpha| < H(\alpha)^{-\chi}.
\]

You replace each linear form \(L_i \) with coefficients in \(\mathbb{Q}(\xi) \) by a linear form \(L'_i \) obtained by replacing every occurrence of \(\xi \) by \(\alpha \).

Then

\[
|L'_1(x_n) \ldots L'_m(x_n)| \leq H(x_n)^{-\delta}
\]

for a finite but large number \(M_1 \) of points \(x_n \) (because \(\alpha \) is very close to \(\xi \)).

Since the new linear forms have algebraic coefficients, you can apply the quantitative Subspace Theorem. By the pigeonhole principle, many points, say \(M_2 \gg M_1/(\log d \log \log d) \), lie in a same hyperplan.

Thanks to linear algebra, many points, say \(M_3 \gg M_2 \), lie in a same hyperplan with a rather small height.

On the other hand, there is a small trick to ensure that a point \(x_n \) in this hyperplan has a very large height.

This provides a contradiction (which corresponds to case (i)), otherwise you can argue inductively (as in (ii)). Instead of taking a limit (you have only a finite number of points!), you use an effective result, that is, a Liouville type inequality.
How to get a transcendence measure in such a case?

You assume that \(\limsup_{n \to \infty} \log H(x_{n+1})/ \log H(x_n) < +\infty \).

Then, you consider an algebraic number \(\alpha \) of degree \(d \) (large enough so that \(\alpha \) does not lie in the vey special subset of \(\overline{\mathbb{Q}} \)) such that, for a too large number \(\chi \),

\[
|\xi - \alpha| < H(\alpha)^{-\chi}.
\]

You replace each linear form \(L_i \) with coefficients in \(\overline{\mathbb{Q}}(\xi) \) by a linear form \(L'_i \) obtained by replacing every occurrence of \(\xi \) by \(\alpha \).

Then

\[
|L'_1(x_n) \ldots L'_m(x_n)| \leq H(x_n)^{-\delta}
\]

for a finite but large number \(M_1 \) of points \(x_n \) (because \(\alpha \) is very close to \(\xi \)).

Since the new linear forms have algebraic coefficients, you can apply the quantitative Subspace Theorem. By the pigeonhole principle, many points, say \(M_2 \gg M_1/(\log d \log \log d) \), lie in a same hyperplan.

Thanks to linear algebra, many points, say \(M_3 \gg M_2 \), lie in a same hyperplan with a rather small height.

On the other hand, there is a small trick to ensure that a point \(x_n \) in this hyperplan has a very large height.

This provides a contradiction (which corresponds to case (i)), otherwise you can argue inductively (as in (ii)). Instead of taking a limit (you have only a finite number of points!), you use an effective result, that is, a Liouville type inequality.

Hence, \(\chi \) cannot be too large and that’s it.
Example: approximation by algebraic numbers of bounded degree

Theorem

(W. M. Schmidt)

Let \(\xi \) be a real number and \(\delta > 0 \). Let us assume that there exists an infinite sequence of distinct algebraic numbers \((\alpha_n)_{n \geq 1}\) of degree at most \(r \) and such that

\[
|\xi - \alpha_n| < H(\alpha_n) - r - 1 - \delta,
\]

for every \(n \geq 1 \). Then, \(\xi \) is transcendental.

Note that, contrary to the case of rational approximation, this is a difficult open problem to bound the number of solutions of inequality

\[
|\alpha - \alpha_n| < H(\alpha_n) - r - 1 - \delta,
\]

when \(\alpha \) is an algebraic number.

However, we can still generalize Baker's theorem as follows.

Theorem (A. & Bugeaud, 2006)

We conserve the assumption of Schmidt's theorem and we assume that

\[
\limsup_{n \to \infty} \frac{\log H(\alpha_{n+1})}{\log H(\alpha_n)} < +\infty.
\]

Then,

\[
\omega(\xi) < c_1 d c_2 \left(\log d \right)^{r-1} \left(\log \log d \right)^{r-1}
\]

for some constants \(c_1 \) and \(c_2 \) both independent of \(d \). In particular, \(\xi \) is either a \(S \)-number or a \(T \)-number.
Example: approximation by algebraic numbers of bounded degree

Theorem (W. M. Schmidt). Let \(\xi \) be a real number and \(\delta > 0 \). Let us assume that there exists an infinite sequence of distinct algebraic numbers \((\alpha_n)_{n \geq 1} \) of degree at most \(r \) and such that

\[
|\xi - \alpha_n| < H(\alpha_n)^{-r-1-\delta},
\]

for every \(n \geq 1 \). Then, \(\xi \) is transcendental.
Example: approximation by algebraic numbers of bounded degree

Theorem (W. M. Schmidt). Let ξ be a real number and $\delta > 0$. Let us assume that there exists an infinite sequence of distinct algebraic numbers $(\alpha_n)_{n \geq 1}$ of degree at most r and such that

$$|\xi - \alpha_n| < H(\alpha_n)^{-r-1-\delta},$$

for every $n \geq 1$. Then, ξ is transcendental.

Note that, contrary to the case of rational approximation, this is a difficult open problem to bound the number of solutions of inequality

$$|\alpha - \alpha_n| < H(\alpha_n)^{-r-1-\delta},$$

when α is an algebraic number.
Example: approximation by algebraic numbers of bounded degree

Theorem (W. M. Schmidt). Let ξ be a real number and $\delta > 0$. Let us assume that there exists an infinite sequence of distinct algebraic numbers $(\alpha_n)_{n \geq 1}$ of degree at most r and such that

$$|\xi - \alpha_n| < H(\alpha_n)^{-r-1-\delta},$$

for every $n \geq 1$. Then, ξ is transcendental.

Note that, contrary to the case of rational approximation, this is a difficult open problem to bound the number of solutions of inequality

$$|\alpha - \alpha_n| < H(\alpha_n)^{-r-1-\delta},$$

when α is an algebraic number.

However, we can still generalize Baker’s theorem as follows.

Theorem (A. & Bugeaud, 2006). We conserve the assumption of Schmidt’s theorem and we assume that

$$\limsup_{n \to \infty} \frac{\log H(\alpha_{n+1})}{\log H(\alpha_n)} < +\infty.$$

Then,

$$w_d(\xi) < c_1 d^{c_2 (\log d)^{r-1} (\log \log d)^r}$$

for some constants c_1 and c_2 both independent of d. In particular, ξ is either a S-number or a T-number.
Infinite words and complexity

The complexity function of a sequence \(a = (a_n)_{n \geq 1} \) taking its values in a finite set \(A \) is the function \(n \mapsto p(n, a) \) defined by:

\[
p(n, a) = \text{Card} \{ (a_j, a_{j+1}, \ldots, a_{j+n-1}) \mid j \geq 1 \}.
\]

Clearly, the function \(p \) is non-decreasing and \(1 \leq p(n, a) \leq (\text{Card } A)^n, n \geq 1 \).

It is extensively studied in combinatorics on words and symbolic dynamics. In particular, the entropy of a sequence (which is nothing else than the topological entropy of the underlying dynamical system) is defined as:

\[
h(a) = \lim_{n \to \infty} \frac{1}{n} \log p(n, a).
\]

Theorem (Morse & Hedlund, 1940).

If a sequence is eventually periodic, then \(p(n, a) \) is bounded, otherwise \(p(n, a) \) is increasing and thus \(p(n, a) \geq n + 1 \).

Moreover, there exist sequences with \(p(n) = n + 1 \) for every \(n \geq 1 \). These are Sturmian sequences.
Infinite words and complexity

The complexity function of a sequence $a = (a_n)_{n \geq 1}$ taking its values in a finite set A is the function $n \mapsto p(n, a)$ defined by:

$$p(n, a) = \text{Card}\{(a_j, a_{j+1}, \ldots, a_{j+n-1}), \ j \geq 1\}.$$
Infinite words and complexity

The complexity function of a sequence $a = (a_n)_{n \geq 1}$ taking its values in a finite set A is the function $n \mapsto p(n, a)$ defined by:

$$p(n, a) = \text{Card}\{(a_j, a_{j+1}, \ldots, a_{j+n-1}), j \geq 1\}.$$

Clearly, the function p is non-decreasing and

$$1 \leq p(n, a) \leq (\text{Card}A)^n, \quad n \geq 1.$$
Infinite words and complexity

The **complexity function** of a sequence \(a = (a_n)_{n \geq 1} \) taking its values in a finite set \(A \) is the function \(n \mapsto p(n, a) \) defined by:

\[
p(n, a) = \text{Card}\{(a_j, a_{j+1}, \ldots, a_{j+n-1}), \ j \geq 1\}.
\]

Clearly, the function \(p \) is non-decreasing and

\[
1 \leq p(n, a) \leq (\text{Card}A)^n, \ n \geq 1.
\]

It is extensively studied in combinatorics on words and symbolic dynamics.
Infinite words and complexity

The complexity function of a sequence \(a = (a_n)_{n \geq 1} \) taking its values in a finite set \(A \) is the function \(n \mapsto p(n, a) \) defined by:

\[
p(n, a) = \text{Card}\{(a, a_{j+1}, \ldots, a_{j+n-1}), j \geq 1\}.
\]

Clearly, the function \(p \) is non-decreasing and

\[
1 \leq p(n, a) \leq (\text{Card}\, A)^n, \quad n \geq 1.
\]

It is extensively studied in combinatorics on words and symbolic dynamics.

In particular, the entropy of a sequence (which is nothing else than the topological entropy of the underlying dynamical system) is defined as:

\[
h(a) = \lim_{n \to \infty} \frac{1}{n} \log p(n, a).
\]
Infinite words and complexity

The complexity function of a sequence \(a = (a_n)_{n \geq 1} \) taking its values in a finite set \(A \) is the function \(n \mapsto p(n, a) \) defined by:

\[
p(n, a) = \text{Card}\{ (a_j, a_{j+1}, \ldots, a_{j+n-1}) \mid j \geq 1 \}.
\]

Clearly, the function \(p \) is non-decreasing and

\[
1 \leq p(n, a) \leq (\text{Card} A)^n, \quad n \geq 1.
\]

It is extensively studied in combinatorics on words and symbolic dynamics.

In particular, the entropy of a sequence (which is nothing else than the topological entropy of the underlying dynamical system) is defined as:

\[
h(a) = \lim_{n \to \infty} \frac{1}{n} \log p(n, a).
\]

Theorem (Morse & Hedlund, 1940). If a sequence is eventually periodic, then \(p(n, a) \) is bounded, otherwise \(p(n, a) \) is increasing and thus

\[
p(n, a) \geq n + 1.
\]

Moreover, there exist sequences with \(p(n) = n + 1 \) for every \(n \geq 1 \). These are Sturmian sequences.
A real number is \textit{normal} in base \(b \) if all the \(b^n \) blocks of digits of length \(n \) occur in its \(b \)-ary expansion with the right proportion, that is, with frequency \(\frac{1}{b^n} \).

Borel’s “conjecture”, 1950.

Every algebraic irrational number is a normal number.

We define the complexity of a real number \(\xi \in (0,1) \) with respect to the base \(b \) by:

\[
p(n, \xi, b) = p(n, a),
\]

where \(a = (a_n) \) \(n \geq 1 \) denotes the \(b \)-ary expansion of \(\xi \), that is \(\xi = \sum_{n \geq 1} a_n / b^n \).

If a real number \(\xi \) is normal in base \(b \), then its complexity is maximal, that is,

\[
p(n, \xi, b) = b^n, \quad \forall n \geq 1.
\]

Using a \(p \)-adic version of the Schmidt Subspace Theorem with three linear forms, we proved:

\textbf{Theorem (A. & Bugeaud, 2004).}

Let \(b \geq 2 \) be an integer and \(\alpha \) be an algebraic irrational number. Then,

\[
\lim_{n \to \infty} \frac{p(n, \alpha, b)}{n} = +\infty.
\]

B. Adamczewski & Y. Bugeaud,

\textit{On the complexity of algebraic numbers I. Expansions in integer bases},

Real numbers, normality and complexity

A real number is normal in base b if all the b^n blocks of digits of length n occur in its b-ary expansion with the right proportion, that is, with frequency $1/b^n$.
Real numbers, normality and complexity

A real number is **normal** in base b if all the b^n blocks of digits of length n occur in its b-ary expansion with the right proportion, that is, with frequency $1/b^n$.

Borel’s “conjecture”, 1950. Every algebraic irrational number is a normal number.
Real numbers, normality and complexity

A real number is normal in base b if all the b^n blocks of digits of length n occur in its b-ary expansion with the right proportion, that is, with frequency $1/b^n$.

Borel’s “conjecture”, 1950. Every algebraic irrational number is a normal number.

We define the complexity of a real number $\xi \in (0, 1)$ with respect to the base b by:

$$p(n, \xi, b) = p(n, a),$$

where $a = (a_n)_{n \geq 1}$ denotes the b-ary expansion of ξ, that is $\xi = \sum_{n \geq 1} a_n/b^n$.
Real numbers, normality and complexity

A real number is normal in base b if all the b^n blocks of digits of length n occur in its b-ary expansion with the right proportion, that is, with frequency $1/b^n$.

Borel’s “conjecture”, 1950. Every algebraic irrational number is a normal number.

We define the complexity of a real number $\xi \in (0, 1)$ with respect to the base b by:

$$p(n, \xi, b) = p(n, a),$$

where $a = (a_n)_{n \geq 1}$ denotes the b-ary expansion of ξ, that is $\xi = \sum_{n \geq 1} a_n/b^n$.

If a real number ξ is normal in base b, then its complexity is maximal, that is,

$$p(n, \xi, b) = b^n, \ \forall n \geq 1.$$
Real numbers, normality and complexity

A real number is normal in base b if all the b^n blocks of digits of length n occur in its b-ary expansion with the right proportion, that is, with frequency $1/b^n$.

Borel's "conjecture", 1950. Every algebraic irrational number is a normal number.

We define the complexity of a real number $\xi \in (0, 1)$ with respect to the base b by:

$$p(n, \xi, b) = p(n, a),$$

where $a = (a_n)_{n \geq 1}$ denotes the b-ary expansion of ξ, that is $\xi = \sum_{n \geq 1} a_n/b^n$.

If a real number ξ is normal in base b, then its complexity is maximal, that is,

$$p(n, \xi, b) = b^n,$$

$\forall n \geq 1$.

Using a p-adic version of the Schmidt Subspace Theorem with three linear forms, we proved:
Real numbers, normality and complexity

A real number is normal in base b if all the b^n blocks of digits of length n occur in its b-ary expansion with the right proportion, that is, with frequency $1/b^n$.

Borel’s “conjecture”, 1950. Every algebraic irrational number is a normal number.

We define the complexity of a real number $\xi \in (0, 1)$ with respect to the base b by:

$$p(n, \xi, b) = p(n, a),$$

where $a = (a_n)_{n \geq 1}$ denotes the b-ary expansion of ξ, that is $\xi = \sum_{n \geq 1} a_n/b^n$.

If a real number ξ is normal in base b, then its complexity is maximal, that is,

$$p(n, \xi, b) = b^n, \; \forall n \geq 1.$$

Using a p-adic version of the Schmidt Subspace Theorem with three linear forms, we proved:

Theorem (A. & Bugeaud, 2004). Let $b \geq 2$ be an integer and α be an algebraic irrational number. Then,

$$\lim_{n \to \infty} p(n, \alpha, b)/n = +\infty.$$
We say that ξ is a real number with sublinear complexity (with respect to the base b), if
\[p(n, \xi, b) < cn, \]
for some constant c. Among these numbers, we find many classical and interesting ones:

- **Rational numbers**.
- **Lacunary numbers**: $P_n \geq 1^{1/b^n}$ with $\lim\inf u_{n+1}/u_n > 1$. For instance, the Liouville number $X_n \geq 1^{1/n!}$ is a lacunary number.
- **Automatic numbers**: these are the numbers whose b-ary expansion can be generated by a finite automaton. Example: the Thue-Morse-Mahler number $X_n \geq 1^{a_n b^n}$, where $a_n = 1$ if the sum of the binary digits of n is even and $a_n = 0$ otherwise.
- **Sturmian numbers**: these are numbers of the form $s_\theta, x = X_n \geq 1^{b \lfloor n \theta + x \rfloor}$, where $\theta > 1$ is irrational and $x \in [0, 1)$.
Real numbers with sublinear complexity

We say that ξ is a real number with sublinear complexity (with respect to the base b), if

$$p(n, \xi, b) < cn,$$

for some constant c.

Among these numbers, we find many classical and interesting ones:

• Rational numbers.
• Lacunary numbers: $p_n \geq 1/10^n$ with $\lim \inf u_{n+1}/u_n > 1$. For instance, the Liouville number $\xi_n \geq 1/10^n!$ is a lacunary number.
• Automatic numbers: these are the numbers whose b-ary expansion can be generated by a finite automaton. Example: the Thue-Morse-Mahler number $\xi_n \geq 1\ a_n b_n$, where $a_n = 1$ if the sum of the binary digits of n is even and $a_n = 0$ otherwise.
• Sturmian numbers: these are numbers of the form $s_{\theta, x} := \xi_n \geq 1\ b\lfloor n\theta + x\rfloor$, where $\theta > 1$ is irrational and $x \in [0, 1)$.
Real numbers with sublinear complexity

We say that \(\xi \) is a real number with sublinear complexity (with respect to the base \(b \)), if

\[p(n, \xi, b) < cn, \]

for some constant \(c \).

Among these numbers, we find many classical and interesting ones:

• Rational numbers.
• Lacunary numbers: \(p_n \geq 1^{1/b^u_n} \) with \(\lim \inf u_{n+1}/u_n > 1 \). For instance, the Liouville number \(X_n \geq 1/1^n! \) is a lacunary number.
• Automatic numbers: these are the numbers whose \(b \)-ary expansion can be generated by a finite automaton. Example: the Thue-Morse-Mahler number \(X_n \geq 1/a^n b^n \), where \(a_n = 1 \) if the sum of the binary digits of \(n \) is even and \(a_n = 0 \) otherwise.
• Sturmian numbers: these are numbers of the form \(s_\theta, x := X_n \geq 1/1^n b^{\lfloor n\theta + x \rfloor} \), where \(\theta > 1 \) is irrational and \(x \in [0, 1) \).
Real numbers with sublinear complexity

We say that ξ is a real number with sublinear complexity (with respect to the base b), if

$$p(n, \xi, b) < cn,$$

for some constant c.

Among these numbers, we find many classical and interesting ones:

- Rational numbers.
- Lacunary numbers: $p_n \geq 1/u_n$ with $\lim \inf u_{n+1}/u_n > 1$. For instance, the Liouville number $X_n \geq 1/10^n$ is a lacunary number.
- Automatic numbers: these are the numbers whose b-ary expansion can be generated by a finite automaton. Example: the Thue-Morse-Mahler number $X_n \geq 1/a_n b^n$, where $a_n = 1$ if the sum of the binary digits of n is even and $a_n = 0$ otherwise.
- Sturmian numbers: these are numbers of the form $s_\theta, x := X_n \geq 1 b^{\lfloor n \theta + x \rfloor}$, where $\theta > 1$ is irrational and $x \in [0, 1)$.
Real numbers with sublinear complexity

We say that ξ is a real number with sublinear complexity (with respect to the base b), if

$$p(n, \xi, b) < cn,$$

for some constant c.

Among these numbers, we find many classical and interesting ones:

- **Rational numbers**.
- **Lacunary numbers**: $\sum_{n \geq 1} 1/b^u_n$ with $\lim \inf u_{n+1}/u_n > 1$. For instance, the Liouville number

$$\sum_{n \geq 1} \frac{1}{10^n!}$$

is a lacunary number.
Real numbers with sublinear complexity

We say that ξ is a \textit{real number with sublinear complexity} (with respect to the base b), if

$$p(n, \xi, b) < cn,$$

for some constant c.

Among these numbers, we find many classical and interesting ones:

- \textbf{Rational numbers}.
- \textbf{Lacunary numbers}: $\sum_{n \geq 1} 1/b^{u_n}$ with $\lim \inf u_{n+1}/u_n > 1$. For instance, the Liouville number
 $$\sum_{n \geq 1} \frac{1}{10^n}$$
 is a lacunary number.
- \textbf{Automatic numbers}: these are the numbers whose b-ary expansion can be generated by a finite automaton. Example: the Thue-Morse-Mahler number
 $$\sum_{n \geq 1} \frac{a_n}{b^n},$$
 where $a_n = 1$ if the sum of the binary digits of n is even and $a_n = 0$ otherwise.
Real numbers with sublinear complexity

We say that ξ is a **real number with sublinear complexity** (with respect to the base b), if

$$p(n, \xi, b) < cn,$$

for some constant c.

Among these numbers, we find many classical and interesting ones:

- **Rational numbers**.
- **Lacunary numbers**: $\sum_{n \geq 1} 1/b^{u_n}$ with $\lim \inf u_{n+1}/u_n > 1$. For instance, the Liouville number

$$\sum_{n \geq 1} \frac{1}{10^n!}$$

is a lacunary number.
- **Automatic numbers**: these are the numbers whose b-ary expansion can be generated by a finite automaton. Example: the Thue-Morse-Mahler number

$$\sum_{n \geq 1} a_n \frac{1}{b^n},$$

where $a_n = 1$ if the sum of the binary digits of n is even and $a_n = 0$ otherwise.
- **Sturmian numbers**: these are numbers of the form

$$s_{\theta, x} := \sum_{n \geq 1} \frac{1}{b^{\lfloor n\theta + x \rfloor}},$$

where $\theta > 1$ is irrational and $x \in [0, 1)$.
Transcendence measures for real numbers with sublinear complexity

Using the method described in the first part of this talk, we are able to prove the following result.

Theorem (A. & Bugeaud, 2006).

Let ξ be a real number with sublinear complexity. Then, one of the following situations holds:

(i) ξ is either a S-number or a T-number;

(ii) ξ is a rational number;

(iii) ξ is a Liouville number.

This theorem is not empty! Indeed, the set of real numbers with sublinear complexity contains:

- all the rational numbers,
- some Liouville numbers (for instance, $P_n \geq \frac{1}{10^n}$),
- some S-numbers (for instance, $P_n \geq \frac{1}{2^n}$),

so that it is difficult to improve the theorem above. Only T-numbers could possibly be removed from assertion (i).

Question. Is it possible to find a way to make a distinction between cases (i), (ii) and (iii)?
Transcendence measures for real numbers with sublinear complexity

Using the method described in the first part of this talk, we are able to prove the following result.

Theorem (A. & Bugeaud, 2006). Let ξ be a real number with sublinear complexity. Then, one of the following situations holds:

1. ξ is either a S-number or a T-number;
2. ξ is a rational number;
3. ξ is a Liouville number.

This theorem is not empty! Indeed, the set of real numbers with sublinear complexity contains:

- all the rational numbers,
- some Liouville numbers (for instance, $\sqrt{2} - 1/10^n$),
- some S-numbers (for instance, $\sqrt{2} - 1/2^n$),

so that it is difficult to improve the theorem above. Only T-numbers could possibly be removed from assertion (i).

Question. Is it possible to find a way to make a distinction between cases (i), (ii), and (iii)?
Using the method described in the first part of this talk, we are able to prove the following result.

Theorem (A. & Bugeaud, 2006). Let ξ be a real number with sublinear complexity. Then, one of the following situations holds:

(i) ξ is either a S-number or a T-number;

(ii) ξ is a rational number;

(iii) ξ is a Liouville number.

This theorem is not empty! Indeed, the set of real numbers with sublinear complexity contains:

- all the rational numbers,
- some Liouville numbers (for instance, $P_{n} \geq \frac{1}{10^n}$),
- some S-numbers (for instance, $P_{n} \geq \frac{1}{2^n}$),

so that it is difficult to improve the theorem above. Only T-numbers could possibly be removed from assertion (i).

Question. Is it possible to find a way to make a distinction between cases (i), (ii) and (iii)?
Transcendence measures for real numbers with sublinear complexity

Using the method described in the first part of this talk, we are able to prove the following result.

Theorem (A. & Bugeaud, 2006). Let \(\xi \) be a real number with sublinear complexity. Then, one of the following situations holds:

(i) \(\xi \) is either a \(S \)-number or a \(T \)-number;
(ii) \(\xi \) is a rational number;

This theorem is not empty! Indeed, the set of real numbers with sublinear complexity contains:

- all the rational numbers,
- some Liouville numbers (for instance, \(\frac{p_n}{10^n} \)),
- some \(S \)-numbers (for instance, \(\frac{p_n}{2^{2n}} \)),

so that it is difficult to improve the theorem above. Only \(T \)-numbers could possibly be removed from assertion (i).

Question. Is it possible to find a way to make a distinction between cases (i), (ii) and (iii)?
Transcendence measures for real numbers with sublinear complexity

Using the method described in the first part of this talk, we are able to prove the following result.

Theorem (A. & Bugeaud, 2006). Let ξ be a real number with sublinear complexity. Then, one of the following situations holds:

(i) ξ is either a S-number or a T-number;
(ii) ξ is a rational number;
(iii) ξ is a Liouville number.
Transcendence measures for real numbers with sublinear complexity

Using the method described in the first part of this talk, we are able to prove the following result.

Theorem (A. & Bugeaud, 2006). Let \(\xi \) be a real number with sublinear complexity. Then, one of the following situations holds:

(i) \(\xi \) is either a \(S \)-number or a \(T \)-number;

(ii) \(\xi \) is a rational number;

(iii) \(\xi \) is a Liouville number.

This theorem is not empty!
Transcendence measures for real numbers with sublinear complexity

Using the method described in the first part of this talk, we are able to prove the following result.

Theorem (A. & Bugeaud, 2006). Let ξ be a real number with sublinear complexity. Then, one of the following situations holds:

(i) ξ is either a S-number or a T-number;
(ii) ξ is a rational number;
(iii) ξ is a Liouville number.

This theorem is not empty!

Indeed, the set of real numbers with sublinear complexity contains:

- all the rational numbers,
- some Liouville numbers (for instance, $\frac{1}{10^n}$),
- some S-numbers (for instance, $\frac{1}{2^n}$),

so that it is difficult to improve the theorem above. Only T-numbers could possibly be removed from assertion (i).

Question. Is it possible to find a way to make a distinction between cases (i), (ii) and (iii)?
Transcendence measures for real numbers with sublinear complexity

Using the method described in the first part of this talk, we are able to prove the following result.

Theorem (A. & Bugeaud, 2006). Let \(\xi \) be a real number with sublinear complexity. Then, one of the following situations holds:

(i) \(\xi \) is either a \(S \)-number or a \(T \)-number;
(ii) \(\xi \) is a rational number;
(iii) \(\xi \) is a Liouville number.

This theorem is not empty!

Indeed, the set of real numbers with sublinear complexity contains:

- all the rational numbers,
Transcendence measures for real numbers with sublinear complexity

Using the method described in the first part of this talk, we are able to prove the following result.

Theorem (A. & Bugeaud, 2006). Let \(\xi \) be a real number with sublinear complexity. Then, one of the following situations holds:

(i) \(\xi \) is either a \(S \)-number or a \(T \)-number;
(ii) \(\xi \) is a rational number;
(iii) \(\xi \) is a Liouville number.

This theorem is not empty!

Indeed, the set of real numbers with sublinear complexity contains:

- all the rational numbers,
- some Liouville numbers (for instance, \(\sum_{n \geq 1} 1/10^n \))
Transcendence measures for real numbers with sublinear complexity

Using the method described in the first part of this talk, we are able to prove the following result.

Theorem (A. & Bugeaud, 2006). Let \(\xi \) be a real number with sublinear complexity. Then, one of the following situations holds:

(i) \(\xi \) is either a \(S \)-number or a \(T \)-number;
(ii) \(\xi \) is a rational number;
(iii) \(\xi \) is a Liouville number.

This theorem is not empty!

Indeed, the set of real numbers with sublinear complexity contains:

- all the rational numbers,
- some Liouville numbers (for instance, \(\sum_{n \geq 1} 1/10^n \))
- some \(S \)-numbers (for instance, \(\sum_{n \geq 1} 1/2^{2^n} \)),

so that it is difficult to improve the theorem above. Only \(T \)-numbers could possibly be removed from assertion (i).

Question. Is it possible to find a way to make a distinction between cases (i), (ii) and (iii)?
Transcendence measures for real numbers with sublinear complexity

Using the method described in the first part of this talk, we are able to prove the following result.

Theorem (A. & Bugeaud, 2006). Let ξ be a real number with sublinear complexity. Then, one of the following situations holds:

(i) ξ is either a S-number or a T-number;
(ii) ξ is a rational number;
(iii) ξ is a Liouville number.

This theorem is not empty!

Indeed, the set of real numbers with sublinear complexity contains:

- all the rational numbers,
- some Liouville numbers (for instance, $\sum_{n \geq 1} 1/10^n$)
- some S-numbers (for instance, $\sum_{n \geq 1} 1/2^{2^n}$),

so that it is difficult to improve the theorem above. Only T-numbers could possibly be removed from assertion (i).
Transcendence measures for real numbers with sublinear complexity

Using the method described in the first part of this talk, we are able to prove the following result.

Theorem (A. & Bugeaud, 2006). Let ξ be a real number with sublinear complexity. Then, one of the following situations holds:

(i) ξ is either a S-number or a T-number;
(ii) ξ is a rational number;
(iii) ξ is a Liouville number.

This theorem is not empty!

Indeed, the set of real numbers with sublinear complexity contains:

- all the rational numbers,
- some Liouville numbers (for instance, $\sum_{n \geq 1} 1/10^n$)
- some S-numbers (for instance, $\sum_{n \geq 1} 1/2^{2^n}$),

so that it is difficult to improve the theorem above. Only T-numbers could possibly be removed from assertion (i).

Question. Is it possible to find a way to make a distinction between cases (i), (ii) and (iii)?
Repetitions in words

Given an integer \(k \geq 1 \) and a finite word \(V \), we write \(V^k \) for the word \(VV \ldots V \) (\(k \) times repeated concatenation of \(V \)).

Example. The pattern \(012012012 = (012)^3 \) is called a repetition of order 3 or simply a cube.

More generally, we can consider real repetitions. For any positive real number \(w \), we denote by \(V^w \) the word \(V^\lfloor w \rfloor V' \), where \(V' \) is the prefix of \(V \) of length \(\lceil (w - \lfloor w \rfloor) |V| \rceil \). Here, \(\lceil y \rceil \) denotes the smallest integer greater than, or equal to \(y \).

Example. The pattern \(0120120 = (012)^{2 + 1/3} \) is called a repetition of order \(2 + 1/3 \).
Repetitions in words

Given an integer $k \geq 1$ and a finite word V, we write V^k for the word $VV\ldots V$ (k times repeated concatenation of V).
Repetitions in words

Given an integer $k \geq 1$ and a finite word V, we write V^k for the word $VV \ldots V$ (k times repeated concatenation of V).

Example. The pattern $012012012 = (012)^3$ is called a repetition of order 3 or simply a cube.
Repetitions in words

Given an integer $k \geq 1$ and a finite word V, we write V^k for the word $VV \ldots V$ (k times repeated concatenation of V).

Example. The pattern $012012012 = (012)^3$ is called a repetition of order 3 or simply a cube.

More generally, we can consider real repetitions.
Repetitions in words

Given an integer $k \geq 1$ and a finite word V, we write V^k for the word $VV \ldots V$ (k times repeated concatenation of V).

Example. The pattern $012012012 = (012)^3$ is called a repetition of order 3 or simply a cube.

More generally, we can consider real repetitions.

For any positive real number w, we denote by V^w the word $V^\lfloor w \rfloor V'$, where V' is the prefix of V of length $\lceil (w - \lfloor w \rfloor) |V| \rceil$. Here, $\lceil y \rceil$ denotes the smallest integer greater than, or equal to y.
Repetitions in words

Given an integer \(k \geq 1 \) and a finite word \(V \), we write \(V^k \) for the word \(VV \ldots V \) (\(k \) times repeated concatenation of \(V \)).

Example. The pattern \(012012012 = (012)^3 \) is called a repetition of order 3 or simply a cube.

More generally, we can consider real repetitions.

For any positive real number \(w \), we denote by \(V^w \) the word \(V^{\lfloor w \rfloor} V' \), where \(V' \) is the prefix of \(V \) of length \(\lceil (w - \lfloor w \rfloor) \vert V \vert \rceil \). Here, \(\lceil y \rceil \) denotes the smallest integer greater than, or equal to \(y \).

Example. The pattern \(0120120 = (012)^{2 + 1/3} \) is called a repetition of order \(2 + 1/3 \).
The diophantine exponent of an infinite word

We say that an infinite word $a = a_1 a_2 \ldots$ satisfies the condition (\ast) if there exist two sequences of finite words $(U_n)_{n \geq 1}$ and $(V_n)_{n \geq 1}$, and a sequence of positive real numbers $(w_n)_{n \geq 1}$ such that:

(i) $U_n V_{w_n} n$ is a prefix of a;

(ii) $|U_n V_{w_n} n|/|U_n V_n n| \geq \rho$;

(iii) the sequence $(|V_{w_n} n|)_{n \geq 1}$ is increasing.

The diophantine exponent of a, denoted by $dio(a)$, is defined as the supremum of the real numbers ρ such that a satisfies the condition (\ast). Thus, $1 \leq dio(a) \leq +\infty$.

It is easy to show that if a is eventually periodic then $dio(a) = +\infty$.

This Diophantine exponent is a measure of the periodicity of a sequence. It is first introduced in B. Adamczewski & Y. Bugeaud, Dynamics for β-shifts and Diophantine approximation, Ergod. Th. & Dynam. Sys., to appear, although it already appears under the lines in B. Adamczewski & J. Cassaigne, On Diophantine properties of real numbers generated by finite automata, Compositio Math. 142 (2006), 1351–1372.
The diophantine exponent of an infinite word

We say that an infinite word $a = a_1a_2 \ldots$ satisfies the condition $(\ast)_\rho$ if there exists two sequences of finite words $(U_n)_{n \geq 1}$ and $(V_n)_{n \geq 1}$, and a sequence of positive real numbers $(w_n)_{n \geq 1}$ such that:

(i) $U_nV_{w_n}$ is a prefix of a;

(ii) $|U_nV_{w_n}| / |U_nV_n| \geq \rho$;

(iii) the sequence $(|V_{w_n}|)_{n \geq 1}$ is increasing.

The Diophantine exponent of a, denoted by $\text{dio}(a)$, is defined as the supremum of the real numbers ρ such that a satisfies the condition $(\ast)_\rho$.

Thus, $1 \leq \text{dio}(a) \leq +\infty$.

It is easy to show that if a is eventually periodic then $\text{dio}(a) = +\infty$.

This Diophantine exponent is a measure of the periodicity of a sequence. It is first introduced in B. Adamczewski & Y. Bugeaud, Dynamics for β-shifts and Diophantine approximation, Ergod. Th. & Dynam. Sys., to appear. although it already appears under the lines in B. Adamczewski & J. Cassaigne, On Diophantine properties of real numbers generated by finite automata, Compositio Math. 142 (2006), 1351–1372.
The diophantine exponent of an infinite word

We say that an infinite word $a = a_1 a_2 \ldots$ satisfies the condition $(\ast)_\rho$ if there exists two sequences of finite words $(U_n)_{n \geq 1}$ and $(V_n)_{n \geq 1}$, and a sequence of positive real numbers $(w_n)_{n \geq 1}$ such that:

(i) $U_n V_n^{w_n}$ is a prefix of a;
The diophantine exponent of an infinite word

We say that an infinite word \(a = a_1 a_2 \ldots \) satisfies the condition \((\ast)_\rho\) if there exists two sequences of finite words \((U_n)_{n \geq 1}\) and \((V_n)_{n \geq 1}\), and a sequence of positive real numbers \((w_n)_{n \geq 1}\) such that:

(i) \(U_n V_n^{w_n} \) is a prefix of \(a \);

(ii) \(|U_n V_n^{w_n}|/|U_n V_n| \geq \rho\);
The diophantine exponent of an infinite word

We say that an infinite word $a = a_1 a_2 \ldots$ satisfies the condition \((\ast)_\rho\) if there exists two sequences of finite words $(U_n)_{n \geq 1}$ and $(V_n)_{n \geq 1}$, and a sequence of positive real numbers $(w_n)_{n \geq 1}$ such that:

(i) $U_n V_n^{w_n}$ is a prefix of a;
(ii) $|U_n V_n^{w_n}| / |U_n V_n| \geq \rho$;
(iii) the sequence $(|V_n^{w_n}|)_{n \geq 1}$ is increasing.

The Diophantine exponent of a, denoted by $\text{dio}(a)$, is defined as the supremum of the real numbers ρ such that a satisfies the condition \((\ast)_\rho\).

Thus, $1 \leq \text{dio}(a) \leq +\infty$.

It is easy to show that if a is eventually periodic then $\text{dio}(a) = +\infty$.

This Diophantine exponent is a measure of the periodicity of a sequence. It is first introduced in B. Adamczewski & Y. Bugeaud, Dynamics for β-shifts and Diophantine approximation, Ergod. Th. & Dynam. Sys., to appear. although it already appears under the lines in B. Adamczewski & J. Cassaigne, On Diophantine properties of real numbers generated by finite automata, Compositio Math. 142 (2006), 1351–1372.
The diophantine exponent of an infinite word

We say that an infinite word $a = a_1 a_2 \ldots$ satisfies the condition $(\ast)_\rho$ if there exist two sequences of finite words $(U_n)_{n \geq 1}$ and $(V_n)_{n \geq 1}$, and a sequence of positive real numbers $(w_n)_{n \geq 1}$ such that:

(i) $U_n V_n^{w_n}$ is a prefix of a;
(ii) $|U_n V_n^{w_n}|/|U_n V_n| \geq \rho$;
(iii) the sequence $(|V_n^{w_n}|)_{n \geq 1}$ is increasing.

The Diophantine exponent of a, denoted by $\text{dio}(a)$, is defined as the supremum of the real numbers ρ such that a satisfies the condition $(\ast)_\rho$.

Thus, $1 \leq \text{dio}(a) \leq +\infty$.

It is easy to show that if a is eventually periodic then $\text{dio}(a) = +\infty$.

This Diophantine exponent is a measure of the periodicity of a sequence. It is first introduced in B. Adamczewski & Y. Bugeaud, Dynamics for β-shifts and Diophantine approximation, Ergod. Th. & Dynam. Sys., to appear. Although it already appears under the lines in B. Adamczewski & J. Cassaigne, On Diophantine properties of real numbers generated by finite automata, Compositio Math. 142 (2006), 1351–1372.
The diophantine exponent of an infinite word

We say that an infinite word \(a = a_1 a_2 \ldots \) satisfies the condition \((\ast)_{\rho}\) if there exists two sequences of finite words \((U_n)_{n \geq 1}\) and \((V_n)_{n \geq 1}\), and a sequence of positive real numbers \((w_n)_{n \geq 1}\) such that:

(i) \(U_n V_n^{w_n} \) is a prefix of \(a \);

(ii) \(|U_n V_n^{w_n}|/|U_n V_n| \geq \rho\);

(iii) the sequence \((|V_n^{w_n}|)_{n \geq 1}\) is increasing.

The Diophantine exponent of \(a \), denoted by \(\text{dio}(a) \), is defined as the supremum of the real numbers \(\rho \) such that \(a \) satisfies the condition \((\ast)_{\rho}\).

Thus,

\[1 \leq \text{dio}(a) \leq +\infty. \]
The diophantine exponent of an infinite word

We say that an infinite word $a = a_1a_2\ldots$ satisfies the condition $(*)_\rho$ if there exists two sequences of finite words $(U_n)_{n \geq 1}$ and $(V_n)_{n \geq 1}$, and a sequence of positive real numbers $(w_n)_{n \geq 1}$ such that:

(i) $U_n V_n^{w_n}$ is a prefix of a;

(ii) $|U_n V_n^{w_n}|/|U_n V_n| \geq \rho$;

(iii) the sequence $(|V_n^{w_n}|)_{n \geq 1}$ is increasing.

The Diophantine exponent of a, denoted by $\text{dio}(a)$, is defined as the supremum of the real numbers ρ such that a satisfies the condition $(*)_\rho$.

Thus,

$$1 \leq \text{dio}(a) \leq +\infty.$$

It is easy to show that if a is eventually periodic then $\text{dio}(a) = +\infty$.
The diophantine exponent of an infinite word

We say that an infinite word $a = a_1a_2 \ldots$ satisfies the condition $(\ast)_\rho$ if there exists two sequences of finite words $(U_n)_{n \geq 1}$ and $(V_n)_{n \geq 1}$, and a sequence of positive real numbers $(w_n)_{n \geq 1}$ such that:

(i) $U_n V_n^{w_n}$ is a prefix of a;
(ii) $|U_n V_n^{w_n}|/|U_n V_n| \geq \rho$;
(iii) the sequence $(|V_n^{w_n}|)_{n \geq 1}$ is increasing.

The Diophantine exponent of a, denoted by $\text{dio}(a)$, is defined as the supremum of the real numbers ρ such that a satisfies the condition $(\ast)_\rho$.

Thus,

$$1 \leq \text{dio}(a) \leq +\infty.$$

It is easy to show that if a is eventually periodic then $\text{dio}(a) = +\infty$.

This Dophantine exponent is a measure of the periodicity of a sequence. It is first introduced in

although it already appears under the lines in

Repetitions and Diophantine approximation

If the \(b \)-ary expansion of a real number \(\xi \) begins with the repetitive pattern \(0.UVw \), then, \(\xi \) is close to the rational number \(p/q := 0.UVw...Vw...Vw... \).

More precisely, \(\xi - p/q < 1/b |UVw| \) while \(q \leq b |U| \left(b |V| - 1 \right) < b |UV| \).

Thus, \(\xi - p/q < 1/q |UVw|/|UV| \).
If the \(b \)-ary expansion of a real number \(\xi \) begins with the repetitive pattern

\[0.UV^w \]
Repetitions and Diophantine approximation

If the b-ary expansion of a real number ξ begins with the repetitive pattern

$$0.UV^w$$

Then, ξ is close to the rational number

$$\frac{p}{q} := 0.U\overline{V} := 0.UVVVV \ldots V \ldots$$
Repetitions and Diophantine approximation

If the b-ary expansion of a real number ξ begins with the repetitive pattern

$$0.UV^w$$

Then, ξ is close to the rational number

$$\frac{p}{q} := 0.U\overline{V} := 0.UVVVV \ldots V \ldots$$

More precisely,

$$\left| \xi - \frac{p}{q} \right| < \frac{1}{b|UV^w|}$$
Repetitions and Diophantine approximation

If the b-ary expansion of a real number ξ begins with the repetitive pattern

$$0.UV^w$$

Then, ξ is close to the rational number

$$\frac{p}{q} := 0.U\overline{V} := 0.UVVVV \ldots V \ldots$$

More precisely,

$$\left| \xi - \frac{p}{q} \right| < \frac{1}{b|UV^w|}$$

while

$$q \leq b|U|(b|V| - 1) < b^{|UV|}.$$
Repetitions and Diophantine approximation

If the b-ary expansion of a real number ξ begins with the repetitive pattern

$$0.UV^w$$

Then, ξ is close to the rational number

$$\frac{p}{q} := 0.U \overline{V} := 0.UVVVV \ldots V \ldots$$

More precisely,

$$\left| \xi - \frac{p}{q} \right| < \frac{1}{b |UV^w|}$$

while

$$q \leq b |U| (b |V| - 1) < b |UV|.$$

Thus,

$$\left| \xi - \frac{p}{q} \right| < \frac{1}{q |UV^w|/|UV|}.$$
Diophantine exponent and Liouville numbers

If ξ is an irrational number, we thus have

$$\mu(\xi) \geq \dio(\xi, b),$$

where $\dio(\xi, b)$ denotes the diophantine exponent of the

b-ary expansion of ξ.

Using the method introduced in

B. Adamczewski & J. Cassaigne,
On Diophantine properties of real numbers
generated by finite automata,

we prove:

Theorem (A. & Bugeaud, 2006).

Let ξ be an irrational number and

$b \geq 2$ be an

integer. Let us assume that there exists a positive number c

such that

$$p(n, \xi, b) < cn, \forall n \geq 1.$$

Then,

$$\max\{2, \dio(\xi, b)\} \leq \mu(\xi) \leq (2c + 1)^3(\dio(\xi, b) + 1).$$

Corollary.

Let ξ be an irrational number with sublinear complexity with respect to the

base b, then

ξ is a Liouville number if and only if

$\dio(\xi, b) = +\infty$.
Diophantine exponent and Liouville numbers

If ξ is an irrational number, we thus have

$$\mu(\xi) \geq \text{dio}(\xi, b),$$

where $\text{dio}(\xi, b)$ denotes the diophantine exponent of the b-ary expansion of ξ.

Using the method introduced in B. Adamczewski & J. Cassaigne, On Diophantine properties of real numbers generated by finite automata, Compositio Math. 142 (2006), 1351–1372. we prove:

Theorem (A. & Bugeaud, 2006).

Let ξ be an irrational number and $b \geq 2$ be an integer. Let us assume that there exists a positive number c such that $p(n, \xi, b) < cn$, $\forall n \geq 1$.

Then,

$$\max\{2, \text{dio}(\xi, b)\} \leq \mu(\xi) \leq (2c + 1)^{3(\text{dio}(\xi, b) + 1)}.$$

Corollary.

Let ξ be an irrational number with sublinear complexity with respect to the base b, then ξ is a Liouville number if and only if $\text{dio}(\xi, b) = +\infty$.

Diophantine exponent and Liouville numbers

If ξ is an irrational number, we thus have

$$\mu(\xi) \geq \text{dio}(\xi, b),$$

where $\text{dio}(\xi, b)$ denotes the diophantine exponent of the b-ary expansion of ξ.

Using the method introduced in

we prove:
Diophantine exponent and Liouville numbers

If ξ is an irrational number, we thus have

$$\mu(\xi) \geq \text{dio}(\xi, b),$$

where $\text{dio}(\xi, b)$ denotes the diophantine exponent of the b-ary expansion of ξ.

Using the method introduced in

we prove:

Theorem (A. & Bugeaud, 2006). Let ξ be an irrational number and $b \geq 2$ be an integer. Let us assume that there exists a positive number c such that

$$p(n, \xi, b) < cn, \ \forall n \geq 1.$$

Then,

$$\max\{2, \text{dio}(\xi, b)\} \leq \mu(\xi) \leq (2c + 1)^3(\text{dio}(\xi, b) + 1).$$
Diophantine exponent and Liouville numbers

If ξ is an irrational number, we thus have

$$\mu(\xi) \geq \text{dio}(\xi, b),$$

where $\text{dio}(\xi, b)$ denotes the diophantine exponent of the b-ary expansion of ξ.

Using the method introduced in

we prove:

Theorem (A. & Bugeaud, 2006). Let ξ be an irrational number and $b \geq 2$ be an integer. Let us assume that there exists a positive number c such that

$$p(n, \xi, b) < cn, \quad \forall n \geq 1.$$

Then,

$$\max\{2, \text{dio}(\xi, b)\} \leq \mu(\xi) \leq (2c + 1)^3(\text{dio}(\xi, b) + 1).$$

Corollary. Let ξ be an irrational number with sublinear complexity with respect to the base b, then ξ is a Liouville number if and only if $\text{dio}(\xi, b) = +\infty$.
Applications I: lacunary and automatic numbers

Lacunary numbers. Let $\xi = \sum_{n \geq 1} \frac{1}{b^n}$ be a lacunary number (that is, $\lim \inf_{n \to \infty} \frac{u_{n+1}}{u_n} > 1$). In that case, the Diophantine exponent can be finite or infinite. We easily get that ξ is a Liouville number if $\lim \sup_{n \to \infty} \frac{u_{n+1}}{u_n} = +\infty$ and ξ is either a S-number or a T-number otherwise.

Automatic numbers. Here, the Diophantine exponent is always finite as obtained in the proof of the following result:

Theorem (A. & Cassaigne, 2006). A Liouville number cannot be generated by a finite automaton. The latter result confirms a conjecture of Shallit, and consequently:

Theorem (A. & Bugeaud, 2006). Irrational automatic real numbers are either S-numbers or T-numbers. This is a first step towards a more general conjecture suggested by P.G. Becker.

Conjecture. Irrational automatic numbers are all S-numbers.
Applications I: lacunary and automatic numbers

- **Lacunary numbers.** Let \(\xi = \sum_{n \geq 1} \frac{1}{b^{u_n}} \) be a lacunary number (that is, \(\lim \inf_{n \to \infty} \frac{u_{n+1}}{u_n} > 1 \)). In that case, the Diophantine exponent can be finite or infinite.

- **Automatic numbers.** Here, the Diophantine exponent is always finite as obtained in the proof of the following result:

 Theorem (A. & Cassaigne, 2006). A Liouville number cannot be generated by a finite automaton.

 The latter result confirms a conjecture of Shallit, and consequently:

 Theorem (A. & Bugeaud, 2006). Irrational automatic real numbers are either S-numbers or T-numbers.

 This is a first step towards a more general conjecture suggested by P.G. Becker.

 Conjecture. Irrational automatic numbers are all S-numbers.
Applications I: lacunary and automatic numbers

• Lacunary numbers. Let $\xi = \sum_{n \geq 1} 1/b^{u_n}$ be a lacunary number (that is, $\liminf_{n \to \infty} \frac{u_{n+1}}{u_n} > 1$). In that case, the Diophantine exponent can be finite or infinite. We easily get that ξ is a Liouville number if

$$\limsup_{n \to \infty} \frac{u_{n+1}}{u_n} = +\infty$$

and ξ is either a S-number or a T-number otherwise.
Applications I: lacunary and automatic numbers

- **Lacunary numbers.** Let $\xi = \sum_{n \geq 1} 1/b^{u_n}$ be a lacunary number (that is, $\liminf_{n \to \infty} \frac{u_{n+1}}{u_n} > 1$). In that case, the Diophantine exponent can be finite or infinite. We easily get that ξ is a Liouville number if

$$\limsup_{n \to \infty} \frac{u_{n+1}}{u_n} = +\infty$$

and ξ is either a S-number or a T-number otherwise.

- **Automatic numbers.** Here, the Diophantine exponent is always finite as obtained in the proof of the following result:
Applications I: lacunary and automatic numbers

- **Lacunary numbers.** Let \(\xi = \sum_{n \geq 1} 1/b^{u_n} \) be a lacunary number (that is, \(\lim \inf_{n \to \infty} \frac{u_{n+1}}{u_n} > 1 \)). In that case, the Diophantine exponent can be finite or infinite. We easily get that \(\xi \) is a Liouville number if

\[
\limsup_{n \to \infty} \frac{u_{n+1}}{u_n} = +\infty
\]

and \(\xi \) is either a \(S \)-number or a \(T \)-number otherwise.

- **Automatic numbers.** Here, the Diophantine exponent is always finite as obtained in the proof of the following result:

Theorem (A. & Cassaigne, 2006). A Liouville number cannot be generated by a finite automaton.

The latter result confirms a conjecture of Shallit.
Applications I: lacunary and automatic numbers

- Lacunary numbers. Let $\xi = \sum_{n \geq 1} 1/b^{u_n}$ be a lacunary number (that is, $\lim \inf_{n \to \infty} \frac{u_{n+1}}{u_n} > 1$). In that case, the Diophantine exponent can be finite or infinite. We easily get that ξ is a Liouville number if

$$\limsup_{n \to \infty} \frac{u_{n+1}}{u_n} = +\infty$$

and ξ is either a S-number or a T-number otherwise.

- Automatic numbers. Here, the Diophantine exponent is always finite as obtained in the proof of the following result:

Theorem (A. & Cassaigne, 2006). A Liouville number cannot be generated by a finite automaton.

The latter result confirms a conjecture of Shallit, and consequently:

Theorem (A. & Bugeaud, 2006). Irrational automatic real numbers are either S-numbers or T-numbers.

This is a first step towards a more general conjecture suggested by P.G. Becker.

Conjecture. Irrational automatic numbers are all S-numbers.
Applications II: Sturmian numbers

For Sturmian numbers $s_{\theta, x}$, the Diophantine exponent can be finite or infinite.

Proposition. Let $s_{\theta, x}$ be a Sturmian number. Then, $\text{dio}(s_{\theta, x}) < +\infty$ if and only if θ has bounded partial quotients in its continued fractions expansion.

Theorem (A. & Bugeaud, 2006). Let $s_{\theta, x}$ be a Sturmian number. Then:

• $s_{\theta, x}$ is a Liouville number if θ has bounded partial quotients;

• $s_{\theta, x}$ is either a S-number or a T-number if θ has unbounded partial quotients.

Corollary. The two numbers $X_{n \geq 1} 1/b^{\lfloor n \sqrt{2} + \zeta(7) \rfloor}$ and $X_{n \geq 1} 1/b^{\lfloor ne + \pi \rfloor}$ are algebraically independent.
Applications II: Sturmian numbers

Sturmian numbers. For Sturmian numbers \(s_{\theta,x} := \sum_{n \geq 1} \frac{1}{b^{\lfloor n\theta + x \rfloor}} \), the Diophantine exponent can be finite or infinite.
Applications II: Sturmian numbers

Sturmian numbers. For Sturmian numbers $s_{\theta,x} := \sum_{n \geq 1} 1/b^{\lfloor n\theta+x \rfloor}$, the Diophantine exponent can be finite or infinite.

Proposition. Let $s_{\theta,x}$ be a Sturmian number. Then, $\text{dio}(s_{\theta,x}) < +\infty$ if and only if θ has bounded partial quotients in its continued fractions expansion.
Applications II: Sturmian numbers

Sturmian numbers. For Sturmian numbers $s_{\theta, x} := \sum_{n \geq 1} \frac{1}{b^{\lfloor n\theta + x \rfloor}}$, the Diophantine exponent can be finite or infinite.

Proposition. Let $s_{\theta, x}$ be a Sturmian number. Then, $\text{dio}(s_{\theta, x}) < +\infty$ if and only if θ has bounded partial quotients in its continued fractions expansion.

Theorem (A. & Bugeaud, 2006). Let $s_{\theta, x}$ be a Sturmian number. Then:
- $s_{\theta, x}$ is a Liouville number if θ has bounded partial quotients;
- $s_{\theta, x}$ is either a S-number or a T-number if θ has unbounded partial quotients.
Applications II: Sturmian numbers

Sturmian numbers. For Sturmian numbers $s_{\theta, x} := \sum_{n \geq 1} 1/b^{\lfloor n\theta + x \rfloor}$, the Diophantine exponent can be finite or infinite.

Proposition. Let $s_{\theta, x}$ be a Sturmian number. Then, $\text{dio}(s_{\theta, x}) < +\infty$ if and only if θ has bounded partial quotients in its continued fractions expansion.

Theorem (A. & Bugeaud, 2006). Let $s_{\theta, x}$ be a Sturmian number. Then:

- $s_{\theta, x}$ is a Liouville number if θ has bounded partial quotients;
- $s_{\theta, x}$ is either a S-number or a T-number if θ has unbounded partial quotients.

The case $x = 0$ is due to

Applications II: Sturmian numbers

Sturmian numbers. For Sturmian numbers \(s_{\theta,x} := \sum_{n \geq 1} 1/b^{\lfloor n\theta + x \rfloor} \), the Diophantine exponent can be finite or infinite.

Proposition. Let \(s_{\theta,x} \) be a Sturmian number. Then, \(\text{dio}(s_{\theta,x}) < +\infty \) if and only if \(\theta \) has bounded partial quotients in its continued fractions expansion.

Theorem (A. & Bugeaud, 2006). Let \(s_{\theta,x} \) be a Sturmian number. Then:

- \(s_{\theta,x} \) is a Liouville number if \(\theta \) has bounded partial quotients;
- \(s_{\theta,x} \) is either a \(S \)-number or a \(T \)-number if \(\theta \) has unbounded partial quotients.

The case \(x = 0 \) is due to

Corollary. The two numbers

\[
\sum_{n \geq 1} \frac{1}{b^{\lfloor n\sqrt{2} + \zeta(7) \rfloor}} \quad \text{and} \quad \sum_{n \geq 1} \frac{1}{b^{\lfloor ne + \pi \rfloor}}
\]

are algebraically independent.
Applications II: Sturmian numbers

In the case where \(x = 0 \), we even have the following nice formula:

\[
\mu(s_\theta) = \text{dio}(s_\theta, b)
\]
Applications II: Sturmian numbers

In the case where $x = 0$, we even have the following nice formula:

$$\mu(s_\theta) = \text{dio}(s_\theta, b) = 1 + \limsup_{n \to \infty} [a_n, a_{n-1}, \ldots, a_1],$$

where $\theta = [a_0, a_1, a_2, \ldots]$.

It is even possible to compute the continued fraction expansion of s_θ. For example:

$$x \geq \frac{1}{2} \left\lfloor \frac{n(1+\sqrt{5})}{2} \right\rfloor = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \cdots \right) \right) + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \cdots + \frac{1}{2} F_{n+1} \cdots$$

Applications II: Sturmian numbers

In the case where \(\mathbf{x} = 0 \), we even have the following nice formula:

\[
\mu(s_\theta) = \text{dio}(s_\theta, b) = 1 + \limsup_{n \to \infty} [a_n, a_{n-1}, \ldots, a_1],
\]

where \(\theta = [a_0, a_1, a_2, \ldots] \).

It is even possible to compute the continued fraction expansion of \(s_\theta \).

For example:

\[
\left\lfloor \frac{n(1+\sqrt{5})}{2} \right\rfloor = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \ldots}}}} = \frac{F_{n+1}}{F_n}
\]

Applications II: Sturmian numbers

In the case where \(x = 0 \), we even have the following nice formula:

\[
\mu(s_\theta) = \text{dio}(s_\theta, b) = 1 + \limsup_{n \to \infty} [a_n, a_{n-1}, \ldots, a_1],
\]

where \(\theta = [a_0, a_1, a_2, \ldots] \).

It is even possible to compute the continued fraction expansion of \(s_\theta \). For example:

\[
\sum_{n \geq 1} \frac{1}{2 \lfloor n(1+\sqrt{5})/2 \rfloor} = \ldots + \frac{1}{2F_{n+1}}
\]

Applications II: Sturmian numbers

In the case where $x = 0$, we even have the following nice formula:

$$
\mu(s_\theta) = \text{dio}(s_\theta, b) = 1 + \limsup_{n \to \infty} [a_n, a_{n-1}, \ldots, a_1],
$$

where $\theta = [a_0, a_1, a_2, \ldots]$.

It is even possible to compute the continued fraction expansion of s_θ. For example:

$$
\sum_{n \geq 1} \frac{1}{2^\lfloor n(1+\sqrt{5})/2 \rfloor} = \underbrace{1}_{2^0} + \underbrace{1}_{2^1} + \underbrace{1}_{2^1} + \underbrace{1}_{2^2} + \underbrace{1}_{2^3} + \underbrace{1}_{2^5} + \cdots + \frac{1}{2^{F_n}} + \cdots
$$

See for instance